S171-TV Ratings

Tony Wong

Background

- This is an event processing task
- Generate a report given a list of events
- Actual data collection is more complicated
- Different manufacturers use different remote control signals
- Audio from TV is also analysed to match channels
\triangleright Household members press the buttons on the TV Ratings box manually
- More demographics data such as gender and age group are gathered and analysed
- http://www.slideshare.net/TICinfo/06-unitam-collection-and-crediting-v4

Statistics

- Subtask 1: 31
- Subtask 2: 12
- Subtask 3: 4
- Subtask 4: 2
- Subtask 5: 11
- Subtask 6: 6
- Subtask 7: 2
- First solved by Ian Wong @ 0:49

Subtask 1

- There is only 1 channel
- which has 122 -hour programmes
- The only household does not press the power button during a programme, and does not press any channel buttons
- i.e. The household either watches a programme in full, or does not watch it at all.
- The output for each programme will be either 0 or 1

Subtask1

- We can use a 1D integer array of size 12 to store the output, \triangleright e.g.a[0] is the ratings of the first programme
- Initialize a[0. .11] = P (whether the TV is on)
- For each sensor record (t, h, b):
\triangleright Toggle a[(t / 7200)] to a[11]. 0 becomes 1 and vice versa

1	1	0	1	1	0	0	0	0	0	0	0

1	1	0	1	1	0	0	1	1	1	1	1

Finally, output a[0] to a[11]

Subtask 5

- Same problem but we now have 100 channels
- Array a would be a 2D array of size $\mathrm{N} \times 12$
- Two extra variables on, channel to track household status
- When the household changes from channel x to y (when the TV is on)
- Toggle a[x][t / 7200] to a[x][11] anda[y][t / 7200] to a[y][11]

$\mathrm{a}[1]$	1	1	0	1	0	0	0	1	1	1	0	0
$\mathrm{a}[2]$	0	0	0	0	1	1	0	0	0	0	1	1

- Create an array of size 86400 instead
- Idea: for each record, toggle a[t] to a[86399]
- Worst case would be 86400×100000 toggles
- Would result in Time Limit Exceeded
- We can use difference array (for details, see Optimization)
- We toggle a[t] only, meaning "a toggle happens here at time t"
\triangleright After all records have been processed, produce

$$
\mathrm{b}[\mathrm{i}]=\mathrm{b}[\mathrm{i}-1] \text { xor } \mathrm{a}[\mathrm{i}] \text {, and output array } \mathrm{b}
$$

\mathbf{a}| 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

There are not more than 100 channels. There is only 1 household.

- When the household changes from channel x to y
- Toggle a[x][t] and a[y][t]

a[x]	1	0	0	0	0	0	0	0
a[y]	0	0	0	0	0	0	0	0
$\downarrow \mathrm{t}=4$								
$\mathrm{a}[\mathrm{x}]$	1	0	0	0	1	0	0	0
$\mathrm{a}[\mathrm{y}]$	0	0	0	0	1	0	0	0

- Compute array b similar to Subtask 2
- When a household turns the TV on, increment a [t]
- When a household turns the TV off, decrement a[t]
- For example
\triangleright a household turns the TV on at $t=3$
\triangleright a household turns the TV on at $t=4$
\triangleright a household turns the TV off at $t=6$

\mathbf{a}	0	0	0	1	0	0	0	0
	\mathbf{a}	0	0	0	1	1	0	0

- Finally, compute b[i] = b[i - 1] + a[i]

b | 0 | 0 | 0 | 1 | 2 | 2 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- When there are 100000 channels,
- We need a 2D array of 100000×86400
- Memory limit exceeded
- Use linked lists to store the changes instead
- Computing the average would take 100000×86400 operations
- Time limit exceeded
- Fast forward sections with no changes
- Use linked lists to store changes

- Add an item $\{t=t i, d=1\}$ when a TV for that channel is turned on
- Add an item $\{t=t i, d=-1\}$ when a TV for that channel is turned off

The households do not press channel buttons.
Number of channels <= 100000
Program 1
Program 2

Cumulative viewers-minutes	Init	$\begin{aligned} & t=1 \\ & d=1 \end{aligned}$	$\begin{aligned} t & =2 \\ d & =-1 \end{aligned}$	$\begin{aligned} & \mathrm{t}=3 \\ & \mathrm{~d}=1 \end{aligned}$	$\begin{aligned} & \mathrm{t}=3 \\ & \mathrm{~d}=1 \end{aligned}$	P1 ends	$\begin{gathered} t=7 \\ d=-1 \end{gathered}$	
Timet	0	1	2	3	3	6	7	86400
Time Change dt	0	1	1	1	0	3	1	86393
cmins $+=\mathrm{v}^{*} \mathrm{dt}$	0	$0>0$	$0>1$	$1>1$	$1>1$	$1>7>0$ reset	$0>2$ s to 0 when pro	$2>86395>0$ gram ends
Output cmins / duration						$7 / 6=1.17$		86395/86394
Viewers v += d	0	$0>1$	$1>0$	$0>1$	$1>2$	2	$2>1$	1
$t=\min$ (next item, program end)	$\begin{gathered} \min (1,6) \\ =1 \end{gathered}$	$\begin{gathered} \min (2,6) \\ =2 \end{gathered}$	$\begin{gathered} \min (3,6) \\ =3 \end{gathered}$	$\begin{gathered} \min (3,6) \\ =3 \end{gathered}$	$\begin{gathered} \min (7,6) \\ =6 \end{gathered}$	$\begin{gathered} \min (7,86400) \\ =7 \end{gathered}$	$\begin{gathered} \text { min(inf, 86400) } \\ =86400 \end{gathered}$	--

Subtask 7

- Similar to subtask 4 but we handle channel changes by adding two list items:
- Decrementing channel x at time t and
- Incrementing channel y at time t
- There could be at most 300000 events
- $1^{*} M+2$ * L
- Overall time complexity: $\mathrm{O}(\mathrm{N}+\mathrm{M}+\mathrm{L})$
- Overall memory complexity: $\mathrm{O}(\mathrm{N}+\mathrm{M}+\mathrm{L})$

