S171 - TV Ratings

Tony Wong

Background

- ► This is an event processing task
 - Generate a report given a list of events
- Actual data collection is more complicated
 - Different manufacturers use different remote control signals
 - Audio from TV is also analysed to match channels
 - Household members press the buttons on the TV Ratings box manually
- More demographics data such as gender and age group are gathered and analysed
- http://www.slideshare.net/TICinfo/06-unitam-collection-and-crediting-v4

Statistics

- ► Subtask 1: 31
- ► Subtask 2: 12
- ► Subtask 3: 4
- ► Subtask 4: 2
- ► Subtask 5: 11
- ► Subtask 6: 6
- ► Subtask 7: 2
- ► First solved by Ian Wong @ 0:49

- ► There is only 1 channel
 - which has 12 2-hour programmes
- ► The only household does not press the power button during a programme, and does not press any channel buttons
- i.e. The household either watches a programme in full, or does not watch it at all.
- ▶ The output for each programme will be either 0 or 1

- ▶ We can use a 1D integer array of size 12 to store the output,
 - ▶ e.g. a[0] is the ratings of the first programme
- ► Initialize a[0..11] = P (whether the TV is on)
- ► For each sensor record (t, h, b):
 - Toggle a[(t / 7200)] to a[11]. 0 becomes 1 and vice versa

- Same problem but we now have 100 channels
- Array a would be a 2D array of size N x 12
- ► Two extra variables **on**, **channel** to track household status
- When the household changes from channel x to y (when the TV is on)
 - Toggle a[x][t / 7200] to a[x][11] and a[y][t / 7200] to a[y][11]

t = 72000, b = 2 (original channel = 1)

There is only 1 channel. There is only 1 household. The household does not press channel buttons.

- Create an array of size 86400 instead
- ► Idea: for each record, toggle a[t] to a[86399]
- ► Worst case would be 86400 x 100000 toggles
 - Would result in Time Limit Exceeded
- We can use difference array (for details, see Optimization)
 - We toggle a[t] only, meaning "a toggle happens here at time t"
 - After all records have been processed, produce
 b[i] = b[i 1] xor a[i], and output array b

There are not more than 100 channels. There is only 1 household.

- When the household changes from channel x to y
 - Toggle a[x][t] and a[y][t]

a[x]	1	0	0	0	0	0	0	0	
a[y]	0	0	0	0	0	0	0	0	
t = 4									
a[x]	1	0	0	0	1	0	0	0	
a[y]	0	0	0	0	1	0	0	0	

Compute array b similar to Subtask 2

There is only 1 channel. There can be many households. The household does not press channel buttons.

a

- ▶ When a household turns the TV on, increment a[t]
- ▶ When a household turns the TV off, decrement a[t]
- For example
 - a household turns the TV on at t = 3.
 - a household turns the TV on at t = 4
 - a household turns the TV off at t = 6
- Finally, compute b[i] = b[i 1]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

The households do not press channel buttons. Number of channels <= 100000

- ► When there are 100000 channels,
 - We need a 2D array of 100000 x 86400
 - Memory limit exceeded
 - Use linked lists to store the changes instead
 - Computing the average would take 100000 x 86400 operations
 - Time limit exceeded
 - Fast forward sections with no changes

The households do not press channel buttons. Number of channels <= 100000

Use linked lists to store changes

- ► Add an item {t = ti, d = 1} when a TV for that channel is turned on
- ► Add an item {t = ti, d = -1} when a TV for that channel is turned off

The households do not press channel buttons.

Number of channels <= 100000

	Program 1						Program 2				
a[2]	0	1	-1	2	0	0	0	-1	0		

Cumulative viewers-minutes	Init	t = 1 d = 1	t = 2 d = -1	t = 3 d = 1	t = 3 d = 1	P1 ends	t = 7 d = -1	P2 ends
Time t	0	1	2	3	3	6	7	86400
Time Change dt	0	1	1	1	0	3	1	86393
cmins += v * dt	0	0 > 0	0 > 1	1 > 1	1 > 1	1 > 7 > 0	0 > 2	2 > 86395 > 0
						rese	ts to 0 when pro	gram ends
Output cmins / duration						7/6 = 1.17		86395/86394
Viewers v += d	0	0 > 1	1 > 0	0 > 1	1 > 2	2	2 > 1	1
t = min(next item, program end)	min(1, 6) = 1	min(2, 6) = 2	min(3, 6) = 3	min(3, 6) = 3	min(7, 6) = 6	min(7, 86400) = 7	min(inf, 86400) = 86400	

- ► Similar to subtask 4 but we handle channel changes by adding two list items:
 - Decrementing channel x at time t and
 - Incrementing channel y at time t
- ► There could be at most 300000 events
 - □ 1 * M + 2 * L
- Overall time complexity: O(N + M + L)
- ► Overall memory complexity: O(N + M + L)