HKOI 2016/17 JQ4 - Crosses

Alex Tung 21/1/2017

Problem description

- Rectangle with opposite vertices (0, 0) and (N, M)
- Some K points in the rectangle

• Find the number of crosses that covers all K points

(For simplicity, assume N >= M.)

'Crosses'

• Points on the diagonals of a square

For example, if N = M = 4:

The set $\{(2,2),(4,2),(3,3),(2,4),(4,4)\}$ is a cross.

The set $\{(0,0),(0,1),(1,0),(1,1)\}$ is also a cross.

Math hints

For an axis-parallel square with length L and bottom-left corner located at (x,y):

The coordinates of the points lying on the diagonal connecting the bottom-left and the top-right corners are

$$(x,y), (x+1,y+1), \dots, (x+L,y+L).$$
 $(x+L,y+L)$
 $(x+L-1,y+L-1)$
 $(x+L-2,y+L-2)$
 $(x+2,y+2)$
 $(x+1,y+1)$

The coordinates of the points lying on the diagonal connecting the top-left and the bottom-right corners are

$$(x, y + L), (x + 1, y + L - 1), \ldots, (x + L, y).$$

SUBTASKS

For all cases: $1 \leq N, M \leq 10^6$, $0 \leq K \leq 200000$, $0 \leq x_i \leq N$, $0 \leq y_i \leq M$

Points Constraints

1 18
$$1 \le N, M \le 10$$

2 12
$$1 \le N, M \le 120$$

3 13
$$1 \le N, M \le 400$$

4 15
$$1 \le N, M \le 3000$$

$$5 9 K=0$$

6 11
$$K = 1$$

7 22 No additional constraints

Statistics

Attempts	Max	Mean	Std Dev	Subtasks						
36	39	5.111	10.121	18: 3	12: 3	13: 0	15: 0	9: 8	11: 2	22: 0

"Probably the hardest HKOI Junior problem ever"

Subtask 5 (K = 0)

Count number of squares

```
long long ans = 0;
for(int i = 1; i <= min(n, m); i++)
  ans += 1LL * (n - i + 1) * (m - i + 1);</pre>
```

From now on, assume K > 0

Subtask 6
$$(K = 1)$$

Formula

$$X = (A + 1) * (C + 1) - 1$$

 $Y = (B + 1) * (D + 1) - 1$
 $Z = min(A, B, C, D)$

Answer = X + Y - Z

Subtask 1 (N <= 10)

Algorithm:

- Use an array (S[][]) to store the K points
- For each square, mark its diagonal points on a 2Darray (say, T[][])
- Check if there is a point (x, y) s.t. S[x][y] = 1 but T[x][y] = 0
 - If no, then we have a valid cross. Add answer by 1

Time complexity

- Suppose N >= M for simplicity
- Exhaust each square: O(NM) * O(M)
- Mark points and check: O(NM)

Overall: O(N²M³)

Subtask 2 (N <= 120)

We only need to check the diagonal points!

Algorithm:

- Use an array (S[][]) to store the K points
- For each square, count how many points lie on its diagonals
 - If answer = K, we have a valid cross. Add answer by 1

Time complexity

- Exhaust each square: O(NM) * O(M)
- Count points on diagonals: O(M)

Overall: O(NM³)

Subtask 3 (N <= 400)

Two ways to proceed:

- 1. Consider fewer squares
- 2. Speed up counting

Method 1: consider fewer squares

Since K > 0, consider a point (x_0, y_0)

Observation from the case K = 1:

- The **center** of the square must lie on the same diagonal (slope = +1/-1) as (x_0, y_0) !
- Only need to check O(M²) squares

Time complexity: $O(M^3 + K)$

Method 2: speed up counting

- Count points in O(1)
- Partial sum on the diagonals

CAUTION: The point on the center of a square may be double-counted

Time complexity: $O(NM^2)$

Subtask 4 (N <= 3000)

Again, two ways to proceed:

- 1'. Combine the two methods for subtask 3
- 2'. Fix center, extend square

Method 2' leads to full solution

Method 1': 1 + 2

- Check O(M²) squares
- O(1) calculation

Time complexity: $O(M^2 + K)$

Method 2': Extend square

• Step 1: calculate number of points on each diagonal (slope = +1/-1) and store points in S[][]

Step 2: Exhaust positions of center

- Step 3: Check if the corresponding diagonals contain all K points
 - If not, continue;

• Step 4: If yes, find the smallest square containing the K points

Time complexity

- We consider O(NM) centers
- Note that we enter step 4 O(M) times
- Finding the smallest square takes O(M) time

Overall: O(NM)

Full solution

• Finding the smallest square in O(1) time (after some preprocessing)

For each diagonal **D**, precalculate (in O(N) time):

- Number of points on D
- The smallest and largest x-coordinates among the points on D

Full solution

- Fix a point (x_0, y_0)
- Recall: "The **center** of the square must lie on the same diagonal (slope = +1/-1) as (x_0, y_0) !"
- O(M) centers to consider

• Using the preprocessed information, calculate the smallest square containing the K points in O(1)

• Time complexity: O(N + K)

Points to note

 The center of a square may not have integral coordinates! (but 2 * coordinate must be integer)

• Avoid double-counting if the center coincide with (x_0, y_0)

The End

• Any questions?