HKOI 2016/17
 JQ4 - Crosses

Alex Tung
21/1/2017

Problem description

- Rectangle with opposite vertices (0, 0) and (N, M)
- Some K points in the rectangle
- Find the number of crosses that covers all K points
(For simplicity, assume N >= M.)

'Crosses'

- Points on the diagonals of a square

For example, if $N=M=4$:
The set $\{(2,2),(4,2),(3,3),(2,4),(4,4)\}$ is a cross. The set $\{(0,0),(0,1),(1,0),(1,1)\}$ is also a cross.

Math hints

For an axis-parallel square with length L and bottom-left corner located at (x, y) :

The coordinates of the points lying on the diagonal connecting the bottom-left and the top-right corners are
$(x, y),(x+1, y+1), \ldots,(x+L, y+L)$.

The coordinates of the points lying on the diagonal connecting the top-left and the bottom-right corners are
$(x, y+L),(x+1, y+L-1), \ldots,(x+L, y)$.

SUBTASKS

For all cases: $1 \leq N, M \leq 10^{6}, 0 \leq K \leq 200000,0 \leq x_{i} \leq N, 0 \leq y_{i} \leq M$
Points Constraints
$118 \quad 1 \leq N, M \leq 10$
2. $121 \leq N, M \leq 120$
$3131 \leq N, M \leq 400$
$4151 \leq N, M \leq 3000$
$59 \quad K=0$
$611 \quad K=1$
$7 \quad 22$ No additional constraints

Statistics

Attempts	Max	Mean	Std Dev	Subtasks						
36	39	5.111	10.121	$18: 3$	$12: 3$	$13: 0$	$15: 0$	$9: 8$	$11: 2$	$22: 0$

"Probably the hardest HKOI Junior problem ever"

Subtask 5 (K = 0)

- Count number of squares

```
long long ans = 0;
for(int i = 1; i <= min(n, m); i++)
    ans += 1LL * (n - i + 1) * (m - i + 1);
```

- From now on, assume K > 0

Subtask 6 (K = 1)

Formula

$$
\begin{aligned}
& X=(A+1)^{*}(C+1)-1 \\
& Y=(B+1) *(D+1)-1 \\
& Z=\min (A, B, C, D)
\end{aligned}
$$

Answer $=X+Y-Z$

Subtask 1 (N <= 10)

Algorithm:

- Use an array (S[][]) to store the K points
- For each square, mark its diagonal points on a 2Darray (say, T[][])
- Check if there is a point (x, y) s.t. $S[x][y]=1$ but $\mathrm{T}[\mathrm{x}][\mathrm{y}]=0$
- If no, then we have a valid cross. Add answer by 1

Time complexity

- Suppose N >= M for simplicity
- Exhaust each square: O(NM) * O(M)
- Mark points and check: O(NM)

Overall: $O\left(N^{2} M^{3}\right)$

Subtask 2 (N <= 120)

We only need to check the diagonal points!

Algorithm:

- Use an array (S[][]) to store the K points
- For each square, count how many points lie on its diagonals
- If answer = K, we have a valid cross. Add answer by 1

Time complexity

- Exhaust each square: O(NM) * O(M)
- Count points on diagonals: O(M)

Overall: O(NM ${ }^{3}$)

Subtask 3 (N <= 400)

Two ways to proceed:

1. Consider fewer squares
2. Speed up counting

Method 1: consider fewer squares

Since K > 0, consider a point ($\mathrm{x}_{\theta}, \mathrm{y}_{\theta}$)

Observation from the case $\mathrm{K}=1$:

- The center of the square must lie on the same diagonal (slope $=+1 /-1$) as (x_{θ}, y_{θ})!
- Only need to check $O\left(M^{2}\right)$ squares

Time complexity: $0\left(M^{3}+K\right)$

Method 2: speed up counting

- Count points in $O(1)$
- Partial sum on the diagonals

CAUTION: The point on the center of a square may be double-counted

Time complexity: O(NM²)

Subtask 4 (N <= 3000)

Again, two ways to proceed:

1'. Combine the two methods for subtask 3
2'. Fix center, extend square

Method 2’ leads to full solution

Method 1’: 1 + 2

- Check O(M²) squares
- O(1) calculation

Time complexity: $O\left(M^{2}+K\right)$

Method 2': Extend square

- Step 1: calculate number of points on each diagonal (slope = +1/-1) and store points in S[][]
- Step 2: Exhaust positions of center
- Step 3: Check if the corresponding diagonals contain all K points
- If not, continue;
- Step 4: If yes, find the smallest square containing the K points

Time complexity

- We consider $0(N M)$ centers
- Note that we enter step $40(M)$ times
- Finding the smallest square takes $O(M)$ time

Overall: O(NM)

Full solution

- Finding the smallest square in $0(1)$ time (after some preprocessing)

For each diagonal D, precalculate (in O(N) time):

- Number of points on D
- The smallest and largest x-coordinates among the points on D

Full solution

- Fix a point (x_{θ}, y_{θ})
- Recall: "The center of the square must lie on the same diagonal (slope $=+1 /-1$) as (x_{θ}, y_{θ})!"
- $O(M)$ centers to consider
- Using the preprocessed information, calculate the smallest square containing the K points in $O(1)$
- Time complexity: $\mathrm{O}(\mathrm{N}+\mathrm{K})$

Points to note

- The center of a square may not have integral coordinates! (but $2{ }^{*}$ coordinate must be integer)
- Avoid double-counting if the center coincide with ($\mathrm{x}_{\theta}, \mathrm{y}_{\theta}$)

The End

- Any questions?

