HKOI 2016/17 JQ3 - Fibonacci Word

Alex Tung 21/1/2017

Problem description

- F(1) = "0", F(2) = "01"
- F(n+2) = F(n+1) + F(n)
- F = "010010100100101001010..."

- Find number of occurrences of W_i in F[L...R]
- $W_i = "00" / "01" / "10" / "11"$

SUBTASKS

For all cases: $1 \leq Q \leq 10000$, $1 \leq L_i \leq R_i \leq 10^{18}$

Points Constraints

$$1 \qquad \qquad W_i = \boxed{11}$$

2 24
$$R_i \le 2000$$

$$3 17 R_i \leq 1000000$$

$$4 19 R_i - L_i \le 100$$

5 No additional constraints

Statistics

Attempts	Max	Mean	Std Dev	Subtasks								
65	100	14.015	21.09	3: 53	24: 21	17: 8	19: 2	37: 2				

Subtask 1

```
• W = "11"
```

• Prove / Observe that answer = 0 :P

Subtasks 2 - 3 (R small)

• Generate a prefix of F

After 28 iterations,F.length() = 1346269

```
//C++ implementation
string F, temp, temp2;
F = "01";
temp = "0";
for(int i = 1; i <= 28; i++){
    temp2 = F + temp;
    temp = F;
    F = temp2;
```

O(RQ) solution

- Step 1: generate string
- Step 2: for each query, count directly

O(Q) solution

```
Step 1: generate string
Step 2: precompute the number of occurrences of "00" / "01" / "10" / "11" in F[1...K]
Step 3: for each query (L, R, W), output cnt[W][R] - cnt[W][L]
(This technique is called 'partial sum'.)
```

Example

```
• F = "01001010010010101010..."
```

• query(4, 12, "00")

i	1	2	3	4	5	6	7	8	9	10	11	12
cnt["00"][i]	0	0	0	1	1	1	1	1	2	2	2	<u>3</u>

```
• Answer = cnt["00"][12] - cnt["00"][4]
= 3 - 1
= 2
```

Subtask 4 ((R - L) small)

 Idea: want to generate F[L...R], by finding out what each character is

• Time complexity: O(Q log R)

Subtask 5

Merge ideas from subtask 3 solution and subtask 4 solution

```
• Idea 1: "answer = cnt[W][R] - cnt[W][L]"
```

• Idea 2: "pos -= len[i+1];"

The algorithm

 Step 1: Find the values of cnt[W][len[i]] and the first and last characters of F(i)

- First character: always '0'
- Last character: alternating between '0' and '1'

 Step 2: Calculate query(1, R, W) by reducing it into smaller cases (similar for query(1, L, W))

Calculating query(1, R, W)

Calculating query(1, R, W)

• Time complexity: O(Q log R)

• To solve for R <= 10¹⁸, need to find cnt[W][len[1]]...cnt[W][len[87]]

The End

• Any questions?