HKOI 2016/17 JQ3 - Fibonacci Word

Alex Tung
21/1/2017

Problem description

- $F(1)=" 0 ", F(2)=" 01 "$
- $F(n+2)=F(n+1)+F(n)$
- $F=" 010010100100101001010 .$. "
- Find number of occurrences of W_i in $F[L \ldots R]$
-W_i = "00" / "01" / "10" / "11"

SUBTASKS

For all cases: $1 \leq Q \leq 10000,1 \leq L_{i} \leq R_{i} \leq 10^{18}$

Points Constraints

$13 W_{i}=11$
$224 \quad R_{i} \leq 2000$
$317 \quad R_{i} \leq 1000000$
$419 \quad R_{i}-L_{i} \leq \mathbf{1 0 0}$

537 No additional constraints

Statistics

Attempts	Max	Mean	Std Dev			Subtasks	
65	100	14.015	21.09	$3: 53$	$24: 21$	$17: 8$	$19: 2$

Subtask 1

-W = "11"

- Prove / Observe that answer = 0 : P

Subtasks 2-3 (R small)

- Generate a prefix of F
- After 28 iterations,
F.length() = 1346269

```
//C++ implementation
string F, temp, temp2;
F = "01";
temp = "0'>;
for(int i = 1; i <= 28; i++){
    temp2 = F + temp;
    temp = F;
    F = temp2;
}
```


O(RQ) solution

- Step 1: generate string
- Step 2: for each query, count directly

O(Q) solution

- Step 1: generate string
- Step 2: precompute the number of occurrences of "00" / "01" / "10" / "11" in F[1...K]
- Step 3: for each query (L, R, W), output cnt[W][R] - cnt[W][L]
(This technique is called 'partial sum’.)

Example

- $F=$ "010010100100101001010..."
-query(4, 12, "00")

i	1	2	3	4	5	6	7	8	9	10	11	12
cnt["00"][i]	0	0	0	$\underline{1}$	1	1	1	1	2	2	2	$\underline{3}$

-Answer = cnt["00"][12] - cnt["00"][4]

$$
\begin{aligned}
& =3-1 \\
& =2
\end{aligned}
$$

Subtask 4 ((R - L) small)

- Idea: want to generate $\mathrm{F}[\mathrm{L} . . \mathrm{R}]$, by finding out what each character is
$\operatorname{len}[\mathrm{n}]:=$ length of $\mathrm{F}(\mathrm{n})$

- Time complexity: O(Q log R)

Subtask 5

- Merge ideas from subtask 3 solution and subtask 4 solution
- Idea 1: "answer $=\operatorname{cnt}[W][R]-\operatorname{cnt}[W][L] "$
-Idea 2: "pos -= len[i+1];"

The algorithm

- Step 1: Find the values of cnt[W][len[i]] and the first and last characters of $\mathrm{F}(\mathrm{i})$
- First character: always ' 0 '
- Last character: alternating between ' 0 ' and ' 1 '
- Step 2: Calculate query(1, R, W) by reducing it into smaller cases (similar for query (1, L, W))

Calculating query(1, R, W)

Calculating query(1, R, W)

- Time complexity: O(Q log R)
- To solve for $\mathrm{R}<=10^{18}$, need to find cnt[W][len[1]]...cnt[W][len[87]]

The End

- Any questions?

