Alice's Meal

YIK WAI PAN

21-1-2016

Statistics

- Attempts: 70
- Max: 100
- Mean: 53.071
- Subtasks:

\section*{| $11: 65$ | $9: 60$ | $27: 55$ | $15: 27$ | $38: 15$ |
| :--- | :--- | :--- | :--- | :--- |}

- Relatively easy problem
- Tickets for the medals

Problem Description

- N dishes on the menu, the dish i has the delicious level of D_{i}
- Alice have K minutes to eat, and each minute she can finish one dish
- Eating dish i during the $t^{\text {th }}$ minute gives Alice $D_{i} \times t$ happiness
- Alice needs to eat K consecutive dishes
- Find the maximum possible total happiness
- Let $f(i)=D_{i} \times 1+D_{i+1} \times 2+D_{i+2} \times 3+\cdots+D_{i+K-1} \times K$
- Find the maximum $f(i)$, where $1 \leq i \leq N-K+1$

Subtask 1 (11\%)

- $1 \leq N \leq 2000, K=1,0 \leq D_{i} \leq 1000$
- Alice can only eat 1 dish
- Output the largest D_{i}
- Time Complexity: $O(N)$

Subtask 2 (9\%)

> $1 \leq N \leq 2000, K=N, 0 \leq D_{i} \leq 1000$

- Alice must eat all the dishes
- Just calculate the total happiness from all dishes
- Time Complexity: $O(N)$

Subtask 3 (27\%)

- $1 \leq N \leq 2000,1 \leq K \leq N, 0 \leq D_{i} \leq 1000$
- For each i, calculate the total happiness gained by adding each happiness one by one
- Choose the maximum total happiness
- Time Complexity: O(NK)

Subtask 4 (15\%)

- $1 \leq N \leq 100000,1 \leq K \leq N, 0 \leq D_{1} \leq D_{2} \leq \cdots \leq D_{N} \leq 1000$
- For all $i<N-K+1$,
$f(i)=D_{i} \times 1+D_{i+1} \times 2+D_{i+2} \times 3+\cdots+D_{i+K-1} \times K$
$1 \wedge \quad 1 \wedge \quad \wedge \quad 1 \wedge \quad 1 \wedge \quad 1 \wedge$
$f(i+1)=D_{i+1} \times 1+D_{i+2} \times 2+D_{i+3} \times 3+\cdots+D_{i+K} \times K$
- Choosing the last K dishes can always give the highest total happiness
- Calculate the total happiness from the last K dishes
- Time Complexity: $O(N)$

Subtask 5 (38\%)

> $1 \leq N \leq 100000,1 \leq K \leq N, 0 \leq D_{i} \leq 1000$

- Look at the formula of total happiness again

$$
\begin{aligned}
& f(i)=\quad D_{i} \times 1+D_{i+1} \times 2+D_{i+2} \times 3+\cdots+D_{i+K-2} \times(K-1)+D_{i+K-1} \times K \\
& f(i-1)=D_{i-1} \times 1+D_{i} \times 2+D_{i+1} \times 3+D_{i+2} \times 4+\cdots+D_{i+K-2} \times K
\end{aligned}
$$

$$
\begin{aligned}
& f(i-1)-f(i)=\left(D_{i-1}+D_{i}+D_{i+1}+\cdots+D_{i+K-2}\right)-D_{i+K-1} \times K, \text { or } \\
& f(i)=f(i-1)-\left(D_{i-1}+D_{i}+D_{i+1}+\cdots+D_{i+K-2}\right)+D_{i+K-1} \times K
\end{aligned}
$$

- We can calculate $f(i)$ using $f(i-1)$

Calculation of $\left(D_{i-1}+D_{i}+D_{i+1}+\cdots+D_{i+K-2}\right)$ is still $O(K)$

Subtask 5 (38\%)

$$
f(i)=f(i-1)-\left(D_{i-1}+D_{i}+D_{i+1}+\cdots+D_{i+K-2}\right)+D_{i+K-1} \times K
$$

Let $g(i)=D_{i-1}+D_{i}+D_{i+1}+\cdots+D_{i+K-2}$
$\vee g(i-1)=D_{i-2}+D_{i-1}+D_{i}+\cdots+D_{i+K-3}$

- $g(i)$ can also be calculated by using $g(i-1)$!
- $g(i)=g(i-1)-D_{i-2}+D_{i+K-2}$
$\vee f(i)=f(i-1)-g(i)+D_{i+K-1} \times K$
- Both can be done in constant time

Subtask 5 (38\%)

- Calculate $f(1)$ and $g(1)$ by adding the terms one by one
- For i from 2 to $\mathrm{N}-\mathrm{K}+1$,
- Calculate $g(i)$ by using $g(i-1)$
- Calculate $\mathrm{f}(\mathrm{i})$ by using $f(i-1)$ and $g(i)$
- Choose the maximum $f(i)$ as the answer
- Time Complexity: $O(N)$

Thank You

