HKOI 2015/16 Solution Senior Q2 (Robos' Feast)
 Alex Tung
 23/1/2016

Task Description

- Cartesian plane
- All integer points (x, y) are colored according to $(|x|+|y|) \bmod 4$
- Task: Find the total value of points inside a given rectangle

Task Description

- Type 1: the edges of the rectangle are axis-parallel ($1,2,4$)
- Type 2: the edges of the rectangle are 45 degrees to the axes (3)

Task Description

-For all test cases, $1<=\mathrm{N}<=10000 ;-10^{8}<=$ coordinates $<=10^{8}$

- Subtask 1 (20 points): $T_{R}=T_{B}=T_{O}=T_{P}$
- Subtask 2 (35 points): $1<=\mathrm{N}<=100$; $-100<=$ coordinates $<=100$
- Subtask 3 (45 points): No additional constraints
- Within a subtask, if you only handle one type of action correctly for each case, you get 80% of the score of that subtask

Motivation

- In HKOI training team, a trainer, whom we call RB, likes to "eat salt"
- In the original task setting, the objects on the integer points are salt instead of oil bottles
- Colors are Red, Blue, Orange, Purple :)

(Source: http://patienttalk.org/wp-content/uploads/2013/03/Salt-cartoon-2.png)

Statistics

Attempts	Max	Mean	Std Dev	Subtasks		
42	80	24.095	20.859	$20: 0$	$35: 0$	$45: 0$
				$28: 25$	$36: 2$	

- In the contest, no one was able to handle Type 2 correctly $: 8$

Presentation Flow

- Subtasks 1 and 2, Type 1
- Subtask 3, Type 1
- Subtasks 1 and 2, Type 2
- Subtask 3, Type 2

Type 1

- Axis-parallel rectangles
- First, swap coordinates so that $\mathrm{x}_{1}<=\mathrm{x}_{2}$ and $\mathrm{y}_{1}<=\mathrm{y}_{2}$

Subtask 1 (all points have the same value)

- $\mathrm{T}_{\mathrm{R}}=\mathrm{T}_{\mathrm{B}}=\mathrm{T}_{\mathrm{O}}=\mathrm{T}_{\mathrm{P}}$
- How to make use of this constraint?

Subtask 1 (all points have the same value)

- Answer $=\mathrm{P}^{*} \mathrm{~T}_{\mathrm{R}}$
- P : number of points inside the rectangle

$$
\text { PP = } \left.\left[x_{2}-x_{1}+1\right)^{*}\left(y_{2}-y_{1}+1\right) \quad-(-1)+1\right]^{*}[1-(-1)+1] \rightarrow 0
$$

Subtask 2 (small coordinates, few Robos)

- Brute force
- for i from x_{1} to x_{2}
- for j from y_{1} to y_{2}
- add value of point (i, j) to answer

Subtask 3

- Clever counting
- Use "tricks" to make counting easier

Subtask 3

- Trick 1: Break given rectangle into pieces

Subtask 3

- Trick 2: Use symmetry

Subtask 3

- Trick 3: Use inclusion-exclusion

Subtask 3

- Current (simplified) setting:
- $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(0,0)$
- $x_{2}, y_{2}>=0$

Subtask 3

- Observation
- Let $S(k)$ be the sum of values of points on the line $x=k$ and inside a rectangle with bottom-left corner $(0,0)$ and top-right corner $\left(x_{2}, y_{2}\right)$
- Then, if
-1) $k_{1} \% 4=k_{2} \% 4$, and
- 2) Both k_{1} and k_{2} are in $\left[0, x_{2}\right]$
- We have $S\left(k_{1}\right)=S\left(k_{2}\right)$

Subtask 3

- Meaning: the "column sum" of points are periodic with period $=4$
- Therefore, we only need to calculate $S(0), S(1), S(2)$, and $S(3)$

Subtask 3

- Consider $S(0)$, i.e. sum of values of points $(0,0),(0,1), \ldots,\left(0, y_{2}\right)$
- RBOPRBOPRBOPRBOPRBOPRBOPR...
- Again, we find it periodic $)^{-}$

Subtask 3

-RBOPRBOPRBOPRBOPRBOPRBOPR...

- Number of 'R's $=\left(y_{2}+4\right) / 4$
- Number of 'B's $=\left(y_{2}+3\right) / 4$
- Number of 'O's $=\left(y_{2}+2\right) / 4$
- Number of 'P's $=\left(y_{2}+1\right) / 4$
- DONE! (S(1), $S(2), S(3)$: very similar)

Type 2

- Edges of rectangles are 45 degrees to the axes
- "Ugly" setting *

Basic Geometry

- Equation of lines 45 degrees to the axes:
-1) $y=x+c$, or
-2) $y=-x+c$

Subtask 1 (all points have the same value)

- Answer $=P * T_{R}$
- P : number of points inside the rectangle
- Let us try some examples
$\cdot(-1,-1),(1,3) \rightarrow \mid 1$
$\cdot(0,-3),(0,3) \rightarrow$ 张 25

Subtask 1 (all points have the same value)

- Answer $=P^{*} T_{R}$
- P : number of points inside the rectangle
- Formula found by several contestants:
- Let $\mathrm{u}=\left|\left(\mathrm{x}_{1}-\mathrm{y}_{1}\right)-\left(\mathrm{x}_{2}-\mathrm{y}_{2}\right)\right|$
- Let $v=\left|\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)\right|$
- $P=(u / 2+1)^{*}(v / 2+1)+(u / 2)^{*}(v / 2)$

Subtask 1 (all points have the same value)

- Let $\mathrm{u}=\left|\left(\mathrm{x}_{1}-\mathrm{y}_{1}\right)-\left(\mathrm{x}_{2}-\mathrm{y}_{2}\right)\right|$
- Let $v=\left|\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)\right|$
- $P=(u / 2+1)^{*}(v / 2+1)+(u / 2)^{*}(v / 2)$
- Q: Why is the formula (sometimes) wrong?
- A: The two unspecified corners may not have integer coordinates.
- e.g. (0, 0), (0, 1)

Subtask 1 (all points have the same value)

- Q: When is the formula correct?
- A: When the two unspecified corners have integer coordinates.
- Q : What does this mean?
- A: This means $\left(x_{1}+y_{1}+x_{2}+y_{2}\right)$ is even.

Subtask 1 (all points have the same value)

- Let $\mathrm{u}=\left|\left(\mathrm{x}_{1}-\mathrm{y}_{1}\right)-\left(\mathrm{x}_{2}-\mathrm{y}_{2}\right)\right|$
- Let $v=\left|\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)\right|$
- If $\left(x_{1}+y_{1}+x_{2}+y_{2}\right)$ is even
- Use $P=(u / 2+1) *(v / 2+1)+(u / 2) *(v / 2)$
- Else

$$
P=((u+1) *(v+1)) / 2
$$

Subtask 1 (all points have the same value)

- Let $\mathrm{u}=\left|\left(\mathrm{x}_{1}-\mathrm{y}_{1}\right)-\left(\mathrm{x}_{2}-\mathrm{y}_{2}\right)\right|$
- Let $v=\left|\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)\right|$
- Or, just $P=((u+1) *(v+1)+1) / 2$

Subtask 2 (small coordinates, few Robos)

- Brute force
- For each point with "small" coordinates, determine whether it is inside the rectangle

Subtask 2 (small coordinates, few Robos)

- Let la $=\min \left(x_{1}-y_{1}, x_{2}-y_{2}\right), \quad l b=\min \left(x_{1}+y_{1}, x_{2}+y_{2}\right)$
- Let ua $=\max \left(x_{1}-y_{1}, x_{2}-y_{2}\right), u b=\max \left(x_{1}+y_{1}, x_{2}+y_{2}\right)$
- for i from -200 to 200
- for j from -200 to 200
- if $(\mathrm{la}<=(\mathrm{i}-\mathrm{j})<=\mathrm{lb})$ and $(\mathrm{ua}<=(\mathrm{i}+\mathrm{j})<=\mathrm{ub})$

Geometric Transformation

- Map all points (x, y) in the rectangle to $(x-y, x+y)$
- Geometric meaning:
-1) Rotate the rectangle by 45 degrees about the origin, then
-2) Enlarge the rectangle by $\sqrt{2}$ about the origin

Geometric Transformation

- For those who know matrices,
$\frac{1}{\frac{-1}{\sqrt{2}}}$
$(t)-x \cos ^{6}=0$

Subtask 3

-1. Apply said transformation

- 2. Use tricks (breaking into pieces, symmetry, inclusion-exclusion)
- 3. Calculate the answer in a simplified setting

Subtask 3

- Current (simplified) setting:
- $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(0,0)$
- $y_{2}>=x_{2}>=0$ (If not, just swap x_{2} and y_{2})

Subtask 3

- Break the rectangle into two parts
- First part: 1R, 1B, 3O, 3P, 5R, 5B, ...
- Second part:
- If x_{2} is even, ...
- If x_{2} is odd, ...

Subtask 3

- First part: 1R, 1B, 3O, 3P, 5R, 5B, ...
- Consider R only: 1R, 5R, 9R, ...
- Arithmetic sequence
- $1+5+\ldots+(4 n+1)=(n+1) *(2 n+1)$
- $3+7+\ldots+(4 n+3)=(n+1) *(2 n+3)$

Subtask 3

- Second part:
- If x_{2} is even, ...
- We may have 3P, 4R, 3B, 4O, 3P, 4R, ...
- For arbitrary x_{2},
- Replace ' 3 ' with $x_{2} / 2$
- Replace ' 4 ' with $x_{2} / 2+1$

Subtask 3

- Second part:
- If x_{2} is odd, ...
- We may have 3P, 3R, 3B, 3O, 3P, 3R, ...
- For arbitrary x_{2},
- Replace ' 3 ' with $\left(x_{2}+1\right) / 2$

Summary

- Subtask 1: find fancy formula to calculate number of points included
- Subtask 2: try all "possible" points
- Subtask 3: use tricks to simplify task, then do O(1) calculation
- I leave the implementation details to you ©
- With good coding skills, you may solve this task within 100 lines of code

Thank you

- Any questions?

