HKOI 2015/16 Solution Senior Q1 (Military Training)

Alex Tung
23/1/2016

Task Description

- Given a $\mathrm{N}^{*} \mathrm{~N}$ grid
- A robot starts on (r_{0}, c_{0})
- It moves according to a sequence of commands
- Each command is up (U), down (D), left (L), right (R)
- Ends until the robot moves out of grid

Task Description

- Command length is K, repeats infinitely
- e.g. "ULLD" \rightarrow Robot moves up \rightarrow "LLDU" \rightarrow Robot moves left \rightarrow "LDUL" ...
- Robot won't be back to ($\mathrm{r}_{0}, \mathrm{c}_{0}$) after K steps
- Task: find maximal number of times a square is visited

50\% Solution

- Pure simulation $)^{-}$
- declare f[2002][2002]; set f[i][j] to 0
- set $r=r_{0}, c=c_{0}$
- while robot is not out of grid
- move (r, c)
- add 1 to $\mathrm{f}[\mathrm{r}][\mathrm{c}]$
- output $\max (f[i][j])$

Example $\left(\mathrm{N}=4,\left(\mathrm{r}_{0}, \mathrm{c}_{0}\right)=(1,1)\right.$, move $=$ "RDL" $)$

$(1,1)$	$(1,2)$	$(2,2)$	$(2,1)$
	$(2,2)$	$(3,2)$	$(3,1)$
	$(3,2)$	$(4,2)$	$(4,1)$
	$(4,2)$	$(5,2) \rightarrow$ END	

Observation 1

- There exists a most frequently visited cell on the first row

$(1,1)$	$(1,2)$	$(2,2)$	$(2,1)$
	$(2,2)$	$(3,2)$	$(3,1)$
	$(3,2)$	$(4,2)$	$(4,1)$
	$(4,2)$	$(5,2) \rightarrow$ END	

Observation 2

- No need to consider the robot's movement beyond row ($\mathrm{K}+1$)

$(1,1)$	$(1,2)$	$(2,2)$	$(2,1)$
	$(2,2)$	$(3,2)$	$(3,1)$
	$(3,2)$	$(4,2)$	$(4,1)$
	$(4,2)$	$(5,2) \rightarrow$ END	

Idea

- (1) There exists a most frequently visited cell on the first row
- Only need to declare an array to count the cells "around" (r_{0}, c_{0})
- + /- $2000\left(\mathrm{~K}_{\text {max }}\right)$ is enough
- (2) No need to consider robot's movement beyond row ($K+1$)
- Only need to simulate the first K^{2} moves

Full solution

- declare f[4002][4002]; set f[i][j] = 0
- set $s x=2000, ~ s y=2000$
- set $r=r_{0}, c=c_{0}$
- for i from 1 to K^{2}
- move (r, c) and ($s x, s y$)
- if (r, c) is out of grid
- break
- if $0<=s x<=4000$ and $0<=s y<=4000$
- add 1 to f[sx][sy]
- output max(f[i][j])

Thank you

- Any questions?

