HKOI 2015/16 Solution Junior Q3 (Stone Game)

Alex Tung

23/1/2016

Task Description

- Given N piles of stones
- The ith pile has a_i stones

- Two-player game
- In a player's turn, he/she has to
 - 1) Remove a stone from pile p, if $a_p > V$, or
 - 2) Add a stone to pile p, if $a_p < V$
- The first player who cannot make a move loses

Task Description

- Alice and Robo play the stone game for Q rounds
- For each round, different values of V may be given
- Output the winner

Key Observation

• Given V, we know how many turns the game will last

• T (number of turns) = $|a_1 - V| + |a_2 - V| + ... + |a_N - V|$

How is T useful?

- If T = 0, Alice loses immediately → Output "Robo"
- If T = 1, Alice makes a move \rightarrow T = 0 \rightarrow Robo loses \rightarrow Output "Alice"
- If T = 2, Alice makes a move → T = 1 → Robo makes a move → T = 0
 → Alice loses → Output "Robo"

• ...

How is T useful?

- In general,
 - If T is even, output "Robo"
 - If T is odd, output "Alice"

Partial solution

- for each given V
- set T = 0
- for i from 1 to N
- add |a_i V| to T
- if T is even, output "Robo"
- else output "Alice"

Too slow to get 100 points

Can we calculate T faster?

- Yes
 - Partial sum
 - Find $s[x] := sum(a_i \mid a_i \le x)$ for each x from 0 to 10^6
 - Some contestants used this method

• But...

Do we need the exact value of T?

- No!
- We only need to know the parity of T

T'

• T' :=
$$(a_1 - V) + (a_2 - V) + ... + (a_N - V)$$

• T =
$$|a_1 - V| + |a_2 - V| + ... + |a_N - V|$$

• The parity of T and T' are the same

Meaning: we can calculate T' instead

T'

• T' =
$$(a_1 - V) + (a_2 - V) + ... + (a_N - V)$$

• =
$$(a_1 + a_2 + ... + a_N) - N*V$$

Full Solution

- Pre-calculate $S = a_1 + a_2 + ... + a_N$
- for each given V
- if (S N*V) is even, output "Robo"
- else output "Alice"

Thank you

Any questions?