Model Answer

Author: Alex Tung
Presenter: Anson Ho

Statistic

- 75 attempts
- mean: 21.52
- max: 100

Problem Statement

- An exam paper consists of N MC questions with 3 choices
- Given Alice, Bob, Carlos's ans
- Output a possible "model answer" such that only Alice has \geq P marks or output "Impossible"

Example

- $n=4, k=2$
- Alice(A)
- Bob(B)
- Carlos(C) ACAC

Marks
$3 \geq 2$
$0<2$
$1<2$

Output: AABA

Observation

- Each question is independent
- i.e. $2^{\text {nd }}$ question's mark won't be affected by $1^{\text {st }}$ question's mark
- \rightarrow order of question is not important

Possible Strategy

- If a question is possible to \uparrow A and $\downarrow \mathrm{B}$ and $\downarrow \mathrm{C}$, then always do it
- But how about other cases?
- When A, B, C have the same answer, let them be all correct or all wrong ?

Subtask 1

- $\mathrm{N} \leq 100000$ and $\mathrm{P}=\mathrm{N}$
- A can pass if and only if A's answer is the same with model answer
- Check whether B,C can pass
- $O(N)$

Subtask 2

- $N=2$
- Many possible ways to do
- Exhausion $O\left(3^{N}\right)$
- Consider possible cases and then solve them by hand

Subtask 3

- $N \leq 100000$ and $B, C^{\prime} s$ answers are same
- 3 people $\rightarrow 2$ people
- Questions can be categorized into

2 groups: same answer, diff answer

Subtask 3

- Diff ans: always let A be correct
- Same ans: let A be correct on first k questions, and wrong on the others
- (order is not important)
- Iterate k from 0 to n to see $i f$ requirements can be achieved
- O(N)

Subtask 4

- $\mathrm{N} \leq 10$
- Exhausion $O\left(3^{N}\right)$ if checking is implemented during the exhaustion
- $O\left(N 3^{N}\right)$ else
$\left[0,3^{N}\right)$: each number is representing a "model answer" (base 3)

Subtask 5

- $\mathrm{N} \leq 1000$
- categorized into 4 groups

	A	B	C
1	X	Y	Z
2	X	X	Y
3	X	Y	X
4	X	X	X

Subtask 5

- Always use group 1 to increase A
- Iterate no. of marks that A get in group 2 and no. of marks that A get in group 3
- No. of marks that A get in group 4 can be calculated in O(1)
- $0\left(N^{2}\right)$

Observation

- If using some question can already let A pass while B,C haven't passed
- Then a possible solution always exist
- Since you can let B,C be all wrong in the remaining question

Subtask 6 (Full solution)

- $\mathrm{N} \leq 100000$
- Target:
$A=P$ and $B, C<P$ using some question
Group 1(XYZ): use 0 "quota" of B, C Group 2(XXY): use 1 "quota" of B Group $3(X Y X)$: use 1 "quota" of C Group $4(X X X)$: use 1 "quota" of B, C

Subtask 6 (Full solution)

- Greedy
- Priority: $1 \rightarrow 2,3 \rightarrow 4$
- Flow: let A be correct in some question in the order of the above priority if A won't $>P$ and B, C won't $\geq \mathrm{P}$
- Then assign the answer of remaining question as stated in the previous observation
- O(N)

Thank you

