Monster Arena Sampson Lee

Question

- Given a N * N grid
- A mirror in some cells
- All mirrors are '/' or all are ' \backslash '
- Every cell is bright or dark
- Bright cells are the path of the light beam
- Given the bright cells, find the positions of mirrors

Question

Solution 1

- Exhaustion
- Assume all mirrors are '/'
- Find every possible configuration of mirrors
- Check whether the path satisfies the configuration
- Do the same for ' \backslash '
- Time Complexity: $\mathrm{O}\left(\mathrm{N}^{2 *} 4^{N}\right)$

Solution 1

- How to check if a path is valid?
, For '/'
- < becomes v, vice versa
- \wedge becomes $>$, vice versa
- For ' $\$ '
- < becomes ^, vice versa
- v becomes $>$, vice versa

Solution 1

Check every starting point and direction

Solution 1

- To check if a path is valid:
- Exhaust every starting point
- Assume (i, j) is the current cell
- Find the next cell (i', j') according to the orientation of the mirror
- If (i^{\prime}, j^{\prime}) is dark, return false
- After reaching the edge, check whether the total number of cells passed $=$ number of bright cells

Solution 1

Valid

Solution 2

- Observe that all mirrors are on the path
- Instead of assuming mirrors, we can determine the mirrors by considering the path
- Assume mirrors are '/'
- If current direction is ' $>$ '

Invalid

Solution 2

- Carefully check cases:
, Direction: '>'
, Mirror: ‘/’

End

Put mirror

Invalid

Solution 2

- Assume all mirrors are '/'
- Exhaust every starting point and direction
- When walking from a starting point
- If invalid, exit
- Compute possible mirrors and update the minimum
- Do the same for ' \backslash '
- Time complexity: $\mathrm{O}\left(\mathrm{N}^{4}\right)$?
- If the function exits immediately when having an invalid case, $\mathrm{O}\left(\mathrm{N}^{2}\right)$

