
Apple Garden

So Pak Yeung
17 - 1 - 2015

Mean: 43.27
Standard Deviation: 25.34
Max: 100
100, 98, 95, 70.......

Statistics

Problem Description

➢ N x N grid
➢ K of the cells contain an apple each
➢ Other cells contain no apples
➢ Find the maximum number of apples

covered by a single M x M square

Solution 1(Intuitive Solution)

➢ For each cell, try to let that cell be the top
left corner of the M x M square

➢ Count how many apples there are in the square
➢ Choose the maximum one

Time Complexity: O(N2M2)
Expected score: 40

Solution 1(Intuitive Solution)

for i = 1 -> n-m+1
 for j = 1 -> n-m+1
 for u = 0 -> m-1
 for v = 0 -> m-1
 if Garden[i+u][j+v] has apple
 ++count

Solution 2 - Observation

3 squares share row 3!

➢ Precompute RowSum[i][j] = Garden[i][j] + Garden[i][j+1] + … +
Garden[i][j+m-1]

➢ Perform Solution 1 optimized with RowSum[][]

for i = 1 -> n-m+1

 for j = 1 -> n-m+1

 for u = 0 -> m-1

 count = count + Rowsum[i+u][j]

Time Complexity: O(N2M)

Expected Score: 55

Solution 2 - Idea

Solution 3 - Observation

➢ Most of the M x M Squares contain very few
apples

➢ Most of the cells are empty
➢ Comparing with N2 or M2, K is relatively

small

Solution 3 - Idea

➢ Perform Solution 1
➢ Determine whether each apple is in the M x

M square rather than check every cell

for i = 1 -> n-m+1
 for j = 1 -> n-m+1
 for x = 1 -> k
 if the xth apple is inside (i,j)..(i+m-1,j+m-1)
 ++count;

Solution 4 - Observation

➢ Back to Solution 2…
○ Can it be faster?

➢ Precompute SqrSum[][] by summing up
Rowsum[][]

Solution 4 - Observation

➢ To achieve higher score, we need to speed
up the precompute process

Rowsum[i][j] = Rowsum[i][j-1] - Garden[i][j-1] + Garden[i][j+m-1]

Solution 4 - Idea

➢ Precompute Rowsum[][]
➢ Precompute Sqrsum[][]

○ Sqrsum[i][j] = Sqrsum[i-1][j] - Rowsum[i-1][j] + Rowsum[i+m-1][j]

➢ Find the maximum in Sqrsum[][]

Time complexity: O(N2)
Expected Score: 70

Solution 5(Out of Syllabus)

➢ Inclusion-exclusion principle

Sqrsum[i][j] = Sqrsum[i-1][j] + Sqrsum[i][j-1] - Sqr[i-
1][j-1] + Garden[i][j]

Ans = Sqrsum[i][j] - Sqrsum[i-m][j] - Sqr[i][j-m] +
Sqrsum[i-m][j-m]

Time Complexity: O(N2)
Expected Score: 70

Solution 6 - Observation

➢ Cannot obtain full mark using solution
related to N and M

➢ Try to think of some solutions related to K

Solution 6 - Observation

➢ One of the optimal ways to select the square:
○ at least one apples on the leftmost column
○ at least one apples on the top row

Solution 6 - Idea

➢ Try all possible leftmost columns
➢ Try all possible top rows
➢ Determine whether each apple is inside the

square

Time Complexity: O(K3)
Expected Score: 70

Solution 7 - Observation

➢ Exhausting 2 edges is time consuming
○ some combinations are impossible

➢ Just exhaust the top rows which are
possible for the leftmost column being tried
from top to bottom

Solution 7 - Observation

Consider the following 1-D case

 M = 6

Diff < 6

Solution 7 - Observation

Consider the following 1-D case

 M = 6

Diff < 6

Solution 7 - Observation

Consider the following 1-D case

 M = 6

Diff < 6

Solution 7 - Observation

Consider the following 1-D case

 M = 6

Diff > 6
count = 3

Solution 7 - Observation

Consider the following 1-D case

 M = 6

Diff < 6

Solution 7 - Observation

Consider the following 1-D case

 M = 6

Diff > 6
count = 3

Solution 7 - Observation

Consider the following 1-D case

 M = 6

Diff > 6
count = 2

Solution 7 - Observation

Consider the following 1-D case

 M = 6

Diff < 6
And so on….

Solution 7 - Idea

➢ When we fix the leftmost column, the
problem is reduced to 1-D case

➢ Only consider apples planted between the
leftmost column and the rightmost column

➢ Apples should be arranged from the bottom
to the top
○ That’s why input data are sorted :)

Solution 7 - Idea

➢ Exhaust leftmost columns
➢ For each column exhausted, screen out the

apples needed to consider
➢ Apply 1-D case method(Greedy)
➢ Find the maximum

Solution 7 - Time Complexity

➢ Exhaust leftmost column - O(K)
➢ Screening and Greedy - O(K)

○ each of the 2 pointers only goes through each apple
once

Time complexity: O(K2)
Expected Score: 100

Other Solutions

➢ Inclusion-exclusion Principle with
discretization - O(K2)

➢ Segment Tree - O(K lg K)
➢ Other reasonable solutions

Expected Score: 100

Thank You

