HKOI 2014/15 Junior Q2 - Royal Bodyguard

Problem Author: Sampson Lee
Solution Writer: Alex Tung

The Problem

- There is a function that assigns 0 (FALSE) or 1 (TRUE) to all lengthN binary strings (denote such string by $\mathrm{S}[1 \ldots \mathrm{~N}]$)
- It is a 1-decision list that looks like:

```
if (S[p[1]] == d[1])
    return a[1];
else if (S[p[2]] == d[2])
        return a[2];
else if (S[p[N]] ==d[N])
    return 1;
else
    return 0;
```


The Problem

- Your task is to find one set of values of p[]$, \mathrm{d}[]$, and a[] .
- $\mathrm{p}[1 . . \mathrm{N}]$ is a permutation of $\{1, \ldots, \mathrm{~N}\}$
- $\mathrm{d}[\mathrm{i}]$ is 0 or 1
-a[i] is 0 or 1

Sample I/O

Output:

S [1..3]	Value $(\mathbf{f}(\mathbf{S}))$
000	1
001	1
010	1
011	0
100	1
101	1
110	0
111	0

```
2 1
1 0
30
-----------------------
if (S[2] == 0)
    return 1;
else if (S[1] == 1)
    return 0;
else if(S[3] == 0)
    return 1;
else
    return 0;
```


Statistics

- Attempts: 30
- Mean: 7.566
- Max: 100 (percywtc)
- Standard deviation: 21.029

Considered a VERY HARD problem for junior...
Main obstacle is implementation

Algorithm 1: solving for $\mathrm{p}[\mathrm{j}]=\mathrm{j}$

- Works for subtask 1 (30 points)

```
for i from 1 to (N - 1)
    set p[i] := i
    if f(S) is the same among all uncrossed S with S[i] = 0
        set d[i] := 0
        set a[i] := that common value
        cross out all S with S[i] = 0
    if f(S) is the same among all uncrossed S with S[i] = 1
        set d[i] := 1
        set a[i] := that common value
        cross out all S with S[i] = 1
set p[N] := N; set d[N] according to the two uncrossed strings
```


Example

S [1. . 3]	Value
000	1
001	1
010	1
011	1
100	1
101	0
110	0
111	0

```
i = 1
set p[1] := 1
all uncrossed S with S[1] = 0 has value 1
=>
set d[1] := 0
set a[1] := 1
cross all strings with S[1] = 0
```


Example

S [1. . 3]	Value
000	4
001	4
010	4
014	4
100	1
101	0
110	0
111	0

```
i = 2
set p[2] := 2
all uncrossed S with S[2] = 1 has value 0
=>
set d[2] := 1
set a[2] := 0
cross all strings with S[2] = 1
```


Example

S [1. . 3]	Value
000	4
001	4
010	4
014	4
100	1
101	0
110	θ
114	θ

```
i = 3
set p[3] := 3
set d[3] := 0
```


Algorithm 1: time complexity

- Ranging from $\mathrm{O}\left(2^{\mathrm{N}}\right)$ to $\mathrm{O}\left(2^{\mathrm{N}} \mathrm{N}^{2}\right)$, depending on implementation
- Depends on:
- How you maintain and iterate through the uncrossed strings
- How you represent the strings (string? number?) and retrieve $\mathrm{S}[\mathrm{i}]$

Algorithm 2: based on algorithm 1

- Try all permutations $\mathrm{p}[1 . . \mathrm{N}]$ of $\{1,2, \ldots, \mathrm{~N}\}$
- Once the permutation is fixed, apply algorithm 1
- C++: next_permutation () can help
- Time complexity: $\mathrm{O}\left(\mathrm{N}!2^{\mathrm{N}}\right)$ to $\mathrm{O}\left(\mathrm{N}!2^{\mathrm{N}} \mathrm{N}^{2}\right)$
- WAY too slow to get 100 points...

Algorithm 3: full solution

- Maintain a list of uncrossed strings
- For each i from 1 to (N-1)
- Find p[i] and d[i] s.t.
- Function value is the same among all uncrossed strings S with $S[p[i]]=d[i]$
- $\mathrm{p}[\mathrm{i}]$ has not been chosen before (!)
- Choose p[i], d[i], a[i]
- Cross all strings with $\mathrm{S}[\mathrm{p}[\mathrm{i}]]=\mathrm{d}[\mathrm{i}]$
- Set $\mathrm{p}[\mathrm{N}]$ to be the remaining index
- Choose $\mathrm{d}[\mathrm{N}]$ by looking at the two uncrossed strings

Example (Sample I/O)

$S[1 . .3]$	Value
000	1
001	1
010	1
011	0
100	1
101	1
110	0
111	0

```
i = 1
all uncrossed S with S[2] = O has value 1
=>
set p[1] := 2
set d[1] := 0
set a[1] := 1
cross all strings with S[2] = 0
```


Example (Sample I/O)

S [1. . 3]	Value
000	4
001	4
010	1
011	0
100	4
101	4
110	0
111	0

```
i = 2
all uncrossed S with S[1] = 1 has value 0
=>
set p[2] := 1
set d[2] := 1
set a[2] := 0
cross all strings with S[1] = 1
```


Example (Sample I/O)

S [1. . 3]	Value
000	4
001	4
010	1
011	0
100	4
101	4
110	0
111	0

```
Alternatively:
all uncrossed S with S[3] = 1 has value 0
=>
set p[2] := 3
set d[2] := 1
set a[2] := 0
cross all strings with S[3] = 1
```


Example (Sample I/O)

S [1. . 3]	Value
000	4
001	4
010	1
014	θ
100	4
101	4
110	0
114	θ

```
i = 3
set p[3] := 1
set d[3] := 0
```


The Impossible cases

Scenario 1: at some stage you cannot find ?'s so that

$$
\text { all uncrossed } S \text { with } S[?]=\text { ? has value ? }
$$

Scenario 2: i $=\mathrm{N}$ but the two remaining strings have the same value

Algorithm 3: time complexity

- Ranging from $\mathrm{O}\left(2^{\mathrm{N}} \mathrm{N}\right)$ to $\mathrm{O}\left(2^{\mathrm{N}} \mathrm{N}^{3}\right)$, depending on implementation
- Extra factor of N is from finding $\mathrm{p}[\mathrm{i}]$
- Depends on:
- How you maintain and iterate through the uncrossed strings
- How you represent the strings (string? number?) and retrieve $\mathrm{S}[\mathrm{i}]$

Implementation Tips

- Read the strings 0-based
- Convert the strings $\operatorname{str}[0 \ldots \mathrm{~N}-1]$ to numbers X in the range $\left[0,2^{\mathrm{N}}\right)$
- Note that the place value of the i-th position of str is 2^{i}
e.g. str $=" 10010 "$, corresponding $X=01001_{2}=9$
red 1 has place value 2^{0}
blue 1 has place value 2^{3}
- To check if the i-th position of str is 1 , use

$$
(\mathrm{C}++):(\mathrm{X} \&(1 \ll i))>0
$$

- \& is bitwise AND, \ll is left-shift

Think about...

- Why does algorithm 3 work?
- Will it ever return a wrong output?
- Will it ever miss a valid output?

