
HKOI 2014/15 Junior
Q2 - Royal Bodyguard

Problem Author: Sampson Lee

Solution Writer: Alex Tung



The Problem

• There is a function that assigns 0 (FALSE) or 1 (TRUE) to all length-
N binary strings (denote such string by S[1..N])

• It is a 1-decision list that looks like:
if (S[p[1]] == d[1])

return a[1];

else if (S[p[2]] == d[2])

return a[2];

...

else if (S[p[N]] == d[N])

return 1;

else

return 0;



The Problem

• Your task is to find one set of values of p[], d[], and a[].

• p[1..N] is a permutation of {1, ..., N}

• d[i] is 0 or 1

• a[i] is 0 or 1



Sample I/O

Output:
2 0 1

1 1 0

3 0

-----------------------

if (S[2] == 0)

return 1;

else if (S[1] == 1)

return 0;

else if(S[3] == 0)

return 1;

else

return 0;

S[1..3] Value (f(S))

000 1

001 1

010 1

011 0

100 1

101 1

110 0

111 0



Statistics

• Attempts: 30

• Mean: 7.566

• Max: 100 (percywtc)

• Standard deviation: 21.029

Considered a VERY HARD problem for junior...

Main obstacle is implementation



Algorithm 1: solving for p[j] = j

• Works for subtask 1 (30 points)
for i from 1 to (N – 1)

set p[i] := i

if f(S) is the same among all uncrossed S with S[i] = 0

set d[i] := 0

set a[i] := that common value

cross out all S with S[i] = 0

if f(S) is the same among all uncrossed S with S[i] = 1

set d[i] := 1

set a[i] := that common value

cross out all S with S[i] = 1

set p[N] := N; set d[N] according to the two uncrossed strings



Example

S[1..3] Value

000 1

001 1

010 1

011 1

100 1

101 0

110 0

111 0

i = 1

set p[1] := 1

all uncrossed S with S[1] = 0 has value 1

=>

set d[1] := 0

set a[1] := 1

cross all strings with S[1] = 0



Example

S[1..3] Value

000 1

001 1

010 1

011 1

100 1

101 0

110 0

111 0

i = 2

set p[2] := 2

all uncrossed S with S[2] = 1 has value 0

=>

set d[2] := 1

set a[2] := 0

cross all strings with S[2] = 1



Example

S[1..3] Value

000 1

001 1

010 1

011 1

100 1

101 0

110 0

111 0

i = 3

set p[3] := 3

set d[3] := 0



Algorithm 1: time complexity

• Ranging from O(2N) to O(2N N2), depending on implementation

• Depends on:

• How you maintain and iterate through the uncrossed strings

• How you represent the strings (string? number?) and retrieve S[i]



Algorithm 2: based on algorithm 1

• Try all permutations p[1..N] of {1, 2, ..., N}

• Once the permutation is fixed, apply algorithm 1

• C++: next_permutation() can help

• Time complexity: O(N! 2N) to O(N! 2N N2)

• WAY too slow to get 100 points...



Algorithm 3: full solution

• Maintain a list of uncrossed strings

• For each i from 1 to (N - 1)

• Find p[i] and d[i] s.t.

• Function value is the same among all uncrossed strings S with S[p[i]] = d[i]

• p[i] has not been chosen before (!)

• Choose p[i], d[i], a[i]

• Cross all strings with S[p[i]] = d[i]

• Set p[N] to be the remaining index

• Choose d[N] by looking at the two uncrossed strings



Example (Sample I/O)

S[1..3] Value

000 1

001 1

010 1

011 0

100 1

101 1

110 0

111 0

i = 1

all uncrossed S with S[2] = 0 has value 1

=>

set p[1] := 2

set d[1] := 0

set a[1] := 1

cross all strings with S[2] = 0



Example (Sample I/O)

S[1..3] Value

000 1

001 1

010 1

011 0

100 1

101 1

110 0

111 0

i = 2

all uncrossed S with S[1] = 1 has value 0

=>

set p[2] := 1

set d[2] := 1

set a[2] := 0

cross all strings with S[1] = 1



Example (Sample I/O)

S[1..3] Value

000 1

001 1

010 1

011 0

100 1

101 1

110 0

111 0

Alternatively:

all uncrossed S with S[3] = 1 has value 0

=>

set p[2] := 3

set d[2] := 1

set a[2] := 0

cross all strings with S[3] = 1



Example (Sample I/O)

S[1..3] Value

000 1

001 1

010 1

011 0

100 1

101 1

110 0

111 0

i = 3

set p[3] := 1

set d[3] := 0



The Impossible cases

Scenario 1: at some stage you cannot find ?’s so that

all uncrossed S with S[?] = ? has value ?

Scenario 2: i = N but the two remaining strings have the same value



Algorithm 3: time complexity

• Ranging from O(2N N) to O(2N N3), depending on implementation

• Extra factor of N is from finding p[i]

• Depends on:

• How you maintain and iterate through the uncrossed strings

• How you represent the strings (string? number?) and retrieve S[i]



Implementation Tips

• Read the strings 0-based

• Convert the strings str[0..N–1] to numbers X in the range [0, 2N)

• Note that the place value of the i-th position of str is 2i

e.g. str = “10010”, corresponding X = 010012 = 9

red 1 has place value 20

blue 1 has place value 23

• To check if the i-th position of str is 1, use

(C++): (X & (1 << i)) > 0

• & is bitwise AND, << is left-shift



Think about...

• Why does algorithm 3 work?

• Will it ever return a wrong output?

• Will it ever miss a valid output?


