HKOI 2014/15 Junior Inverse Problem

Problem setter Alex Poon

Presenter: Steven Lau

Inverse Problem

- Input: 2 integers N M
 - $\circ \qquad 1 \leq N \leq 50000$
 - \circ -2³¹ \leq M \leq 2³¹-1
- Output: N distinct integers
 - \circ -2³¹ \leq a₁, a₂, a₃, ..., a_N \leq 2³¹-1
 - $\circ a_1 + a_2 + a_3 + \dots + a_N = M$
 - $\circ\,$ If there are multiple solutions, output any one of them

Inverse Problem

- Input: 2 integers N M
 - $\circ \qquad \textbf{1} \leq \textbf{N} \leq 500000$

○
$$-2^{31} \le M \le 2^{31} - 1$$

• Sample

Input	Output
3 6	1 2 3
4 8	3 -1 4 2

Think functional?

•
$$f(N, M) = [a_1, a_2, a_3, ..., a_N]$$
 where
 $\circ 1 \le N \le 500000$
 $\circ -2^{31} \le M \le 2^{31} - 1$
 $\circ -2^{31} \le a_1, a_2, a_3, ..., a_N \le 2^{31} - 1$
 $\circ a_1 + a_2 + a_3 + ... + a_N = M$
• Find f.

Adhoc

• f(1, M) = [M]

Input	Output
1 -2147483648	-2147483648
1 -123	-123
1 -1	-1
10	0
1 456	456
1 2147483647	2147483647

Adhoc

• f(2, M) = [M, 0]

Input	Output
2 -2147483648	-2147483648 0
2 -123	-123 0
2 -1	-1 0
2 0	1 -1
2 456	456 0
2 2147483647	2147483647 0

Adhoc

• f(3, M) = [M, 1, -1]

Input	Output
3 -2147483648	-2147483648 1 -1
3 -123	-123 1 -1
3 -1	-1 2 -2
3 1	1 2 -2
3 456	456 1 -1
3 2147483647	2147483647 1 -1

Subtask 1: $1 \le N \le 3$

30 points in pocket! continue to observe

When N = 1, 3, 5, 7, 9, ...

- f(1, M) = [M]• f(3, M) = [M, 1, -1]• f(5, M) = [M, 1, -1, 2, -2]• f(7, M) = [M, 1, -1, 2, -2, 3, -3]• f(9, M) = [M, 1, -1, 2, -2, 3, -3, 4, -4]
- Yeah, full score, early leave

Wait!

- The result may not be distinct!
- For example,
 - f(7, 2) will be [2,1,-1,2,-2,3,-3]
- Let's make it [2,1,-1,3,-3,4,-4]

When N = 2, 4, 6, 8, ...

- f(2, M) = [M, 0]
- f(4, M) = [M, 0, 1, -1]
- f(6, M) = [M, 0, 1, -1, 2, -2]
- f(8, M) = [M, 0, 1, -1, 2, -2, 3, -3]
- ...
- Not yet full score

When N = 2, 4, 6, 8, ...

- f(8, -1) = [-1, 0, 1, -1, 2, -2, 3, -3]
- make it to [-1,0,2,-2,3,-3,4,-4]
- full score, go on to next problem

You wish >:]

f(8, 0) = [0,0,1,-1,2,-2,3,-3]
Make it [1,-1,2,-2,3,-3,4,-4]

Thank you

--Solution in Haskell for your interests import Data.List

main = do
[n, m] <- fmap (map read . words) getLine
putStrLn . unwords . map show . take n \$ f n m</pre>

zero = [1..] >>= (\x -> [x, -x]) --zero is [1,-1,2,-2,3,-3,...]