
Input Method

Tony Wong

January 11, 2014

Statistics

0

5

10

15

20

25

30

No

Attempt

0 1~20 21-40 41~60 61~80 81~99 100

Description

 Given a dictionary of candidate words and Dr.
Jones' input, correct the words.

 For each word in the sentence, Dr. Jones mistypes
exactly 1 letter.

 Size of dictionary = N

 Number of words in sentence = W

 Length of each word = L

Sample

6 8

computer

hardware

installs

keyboard

software

speakers

4

conputer

installa

compuyer

softwate

computer

installs

computer

software

Note

 In the sample below, we are using actual English words. In the
test cases, however, random generated synthetic words will be
used. Nearly all the words and letters are generated
independently and uniformly at random (the chance of each
alphabet appearing is equal). The positions of the incorrect letter
are also chosen independently and uniformly at random.

 The words and letters are random.

 The position of the incorrect letter is also random.

 The dictionary is given in sorted order.

Constraints

 In test cases worth 50% of the total points

 1 ≤ N, W ≤ 2000 , 6 ≤ L ≤ 20

 In all test cases

 1 ≤ N, W ≤ 20000 , 6 ≤ L ≤ 50

50% Solution

 Do what it says on the question paper.

 For each word in sentence, check every word in
dictionary to find a match.

 O(NWL) / O(NW)

Solution

 O(NWL)

 50%: 2000 x 2000 x 100 = 4e8

 TLE, ~25%

 O(NW)

 50%: 2000 x 2000 = 4e6

 100%

 Requires more efficient algorithm

 Time / memory trade off necessary?

Binary search

 In attempt to reduce complexity to O(W lg N)

 Recursively locate the "closest" word.

 Does it really work?

 Example:

Dictionary = {55555, 55655, 56555, 56455}

Search = 57655

 Binary search DOES NOT work.

Overly complex solution

 Hashing

 A hash is a short signature of a large data.
 e.g. sha512(putty.exe) =

6def636ab478a7f49127c706272ff8b2862a5de50fd34e1e8509
b7c1ff1da6c87001a764b5c9bb2d56d30534cfaee10c8c343575
e79ae853e42c3306561411cf

Hashing Method 1

 Hash all the words in the dictionary with different
positions.

 e.g. abcdef → bcdef, acdef, abdef, abcef, abcdf, abcde

 And then calculate the hash of these 6 letters,
followed by binary search

 Complexity

 Generation: O(NL)

 Query: O(WL lg(NL)) → 20000 x 100 x 20 = 4e7

 Memory: O(NL)

 Does it work?

 Special handling required

Hashing Method 2

 Hash all the words in the dictionary with different
positions and changed letter.

 e.g. abcdef -> bbcdef, cbcdef, …, zbcdef,
 aacdef, accdef, …, ..., …, abcdez

 Again, perform binary search on each query

 Complexity:

 Generation: 26 x N x L = 5e7

 Query: O(W lg (26NL)) = 20000 x 26 = 5e5

 Memory: O(26 x N x L) = 5e7

 Does it work?

 Not recommended

"Ideal" solution (Tony's solution)

 We have no intention to test hashing

 There is exactly one incorrect letter.

 If the first letter is different, the second one must
be the same in order to be a candidate.

 Only search those with same first letter OR same
second letter.

 We know how to do same first letter, but what
data structure for same second letter?

 Create 2D array of size 26 x N to store the indexes

"Ideal" solution (Tony's solution)

 Complexity:

 Generation: O(N)

 Query: NW/26 = 1.5e7

 Memory: 26 x N

 May work, or may not work

Further improvement

 Check even small part of dictionary for each query

 Only search those with
 (same 1st letter AND same 2nd letter) OR
 (same 3rd letter AND same 4th letter)

 What data structure to use?

 Memory = 2 x 26 x 26 x N?

 Linked lists

 Create two "indexes" (each size = 26x26) that contains
the heads of the lists, e.g. aa, ab, ac, ad

 Each word in dictionary will point to the next one with
same 1st & 2nd letter; and same 3rd & 4th letter

Complexity

 Generation: O(N)

 Query: O(NW/26/26) = 600000

 Memory: O(N + 26x26x2)

 Since minimum L = 6, we can even do 3 letters.

Other solutions

 Hash table

 Tree

Takeaways

 Read problem statement carefully

 Random data is everywhere

 Don't overcomplicate things

 Full solution may be leaner than you thought

 Further reading:

 Linked lists

 Database string indexing

 Hashing

