HKOI Final 2014 Solution Junior Q4: Fair Santa Claus

January 11, 2014

Problem statement

- Given 3 integers n, a, b, promised $a+b=n$.
- Partition $[n]=\{1,2,3, \ldots, n-1, n\}$ into two sets α and β with size a and b respectively.
- Let the sum of elements in the sets be A and B respectively.
- Your task it to output a partition that minimize $|A-B|$.
- $n \leq 100000$.

Statistics

HKOI 2014 Junior Q4

Candidates

Brute Force

- Try all $\binom{n}{a} \leq 2^{n}$ possible partitions
- Basic recursion
- Fits in time limit for $n \leq 15$
- Expected Score: 25

Solution

From now on lets assume $a \geq b$. Let
$S=1+2+\ldots+n=\frac{n(n+1)}{2}$.

Solution

From now on lets assume $a \geq b$. Let
$S=1+2+\ldots+n=\frac{n(n+1)}{2}$.
Case 1: $1+2+\ldots+a \geq S / 2$
Assigning $\{1,2, \ldots, a\}$ to α is optimal since A could not be smaller.

Solution

From now on lets assume $a \geq b$. Let
$S=1+2+\ldots+n=\frac{n(n+1)}{2}$.
Case 1: $1+2+\ldots+a \geq S / 2$
Assigning $\{1,2, \ldots, a\}$ to α is optimal since A could not be smaller.

Case 2: $1+2+\ldots+a<S / 2$
We claim that if S is even, the optimal $|A-B|$ is 0 . If S is odd, the optimal $|A-B|$ is 1 . This means we can always find a perfect partition.

Solution

The solution consists of two phases. In phase 1, we make the difference of two sets "not too large":

Solution

The solution consists of two phases. In phase 1, we make the difference of two sets "not too large":

Phase 1

- Step 1: First assign $\{1,2, \ldots, a\}$ to α (As always, β take the rest).
- Step 2: Let the current $\alpha=\{x, x+1, x+2, \ldots, y-1, y\}$.
- Step 3a: If $A<B$, replace x by $y+1$. Go back to step 2 .
- Step $3 b$: If $A \geq B$, this phase is done.

Solution

The solution consists of two phases. In phase 1, we make the difference of two sets "not too large":

Phase 1

- Step 1: First assign $\{1,2, \ldots, a\}$ to α (As always, β take the rest).
- Step 2: Let the current $\alpha=\{x, x+1, x+2, \ldots, y-1, y\}$.
- Step 3a: If $A<B$, replace x by $y+1$. Go back to step 2 .
- Step $3 b$: If $A \geq B$, this phase is done.

First, the procedure must terminate since $a \geq b$, taking the largest a integers from [n] must obtain a greater sum. Second, in each step, we increase A by a, therefore when terminated, $A-B<a$.

Solution

Now we obtain a partition that $A-B<a$ and α is composed of continuous integers. We can do a single swap to minimize the difference.

Solution

Now we obtain a partition that $A-B<a$ and α is composed of continuous integers. We can do a single swap to minimize the difference.

Phase 2

- Let $d=A-B$.
- We would like to find a x in α, and y outside α such that $x-y=\lfloor d / 2\rfloor$.
- Replacing x by y yields the optimal solution.
- Since the largest element in α is at least $a+1$, we can always find such x, y.

