HKOI 2013 SENIOR

Bacteria Research

 prepared by Yuen Chak Fai
Statistics

Problem

- Given 2 groups of N 2-digit integers each - Match them in a way such that GCD is greatest

Solution 1

- Try all possible matching
- Determine the GCD
- Complexity $=\mathrm{O}(\mathrm{N}$! * time to find GCD)
- Score <= 30
- How to determine the GCD?

Solution idea

- Fix GCD (say k)
- Determine whether a matching exists, where each number is divisible by k

Observation 1

- If $k>=100$
- We can determine the last 2 digits given a fixed first 2 digits
- e.g. $k=479$, given the first 2 digits are 62 . We know the last 2 digits must be 27

Solution 2

- Iterate k from max possible GCD (say 9999) down to 100
- For each "first 2 digits", find if there still exists a "last 2 digits" which is divisible by k
- If every "first 2 digits" can be matched, then k is the optimal answer
- Complexity $=\mathrm{O}\left(\max G C D * \mathrm{~N}^{\wedge} 2\right)$
- Score ~ 40

Observation 2

- There can only be 100 different value of 2 digit number
- We can reduce N to 100 by counting the frequency of each occurrence

Solution 3

- Applying observation 2 to solution 2
- Complexity $=\max G C D * 100^{\wedge} 2$
- Score $=65$

Solution 4

- What if $\mathrm{k}<100$? How to determine whether a matching is possible?
- e.g. $\mathrm{k}=36$, given "first 2 digits" is 34 . The "last 2 digits" can be 20, 56, 92
ㅁ Which one of $20,56,92$ should be used?
- Answer = anyone!!
- Why?

Solution 4 (cont.)

- Argument:
- If only some of "last 2 digits" can be used, then there exists at least a "first 2 digits" which contains only a subset of the "last 2 digits"
- However, given $x^{*} 100+y$ is divisible by k, $x^{*} 100+y+d^{*} k$ is also divisible by k (d can be negative, $0<=\mathrm{y}+\mathrm{d}^{*} \mathrm{k}<=99$)
- Hence, there does not exist a "first 2 digits" which contain only a subset of "last 2 digits"

Solution 4 (cont.)

- Therefore, the solution is simple
- We can greedily match the digits even if k < 100
(a) Complexity $=\max G C D * 100^{\wedge} 2$
- Score $=100$

