HKOI2010 Senior

OI Football Team Solution

30/1/2010 whh

Stat:

#Attempts	37
Maximum	100
#Maximum	2
Mean (Attempted)	32.4
Minimum	0
Std Dev (Attempted)	35.7

Problem Statement: Given the positions of the N football players, K and the following process.

- 1) The process starts at player A.
- Player A kicks the ball to player B (B!=A) with the greatest distance to player A.
- 2) Output A and A will leave
- 3) Player B kicks the ball to player C (C!=B) with the least distance to player B.
- 4) Repeat (1) and (3). There are K kicks in total.

Repeat the process until there is no player left.

For 50% test data, 2<=N<=50 1<=K<=1000 0<=Xi, Yi<=1000

50% Solution

Simulation

Complexity: O(KN²)

100% Solution

Simulation Again!

We need to speed up the procedure of finding the nearest / the most distant player!

For each player i,

- 1) Create a sorted array a[i][N-1] storing the distance of this player and all of the other players.
- 2) Use 2 integers NN[i] and DD[i] to store the indices of the nearest and the most distant players in the array respectively.

(NN[i] = 1 and DD[i] = N-1)

When a player i gets the ball, maintain NN[i] and DD[i].

while a[i][NN] is left NN[i] = NN[i]+1
while a[i][DD] is left DD[i] = DD[i]-1

Find the next player immediately after this process.

What are the complexities of the two solutions?

 $O(KN^{2})$ vs $O(N^{3} + KN + N^{2})$

Thank you!