Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson Leung

$13^{\text {th }}$ January, 2007

Statistics

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50% Solution
70% Solution
100% Solution
Special Note

Disappointing

Statistics

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics

Problem
Description
Naïve Solution
50% Solution
70% Solution
100% Solution
Special Note

Disappointing

HKOI 2007 Senior Q3 Statistics

Statistics

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson

Leung
Statistics
Problem
Description
Naïve Solution
50% Solution
70% Solution
100% Solution
Special Note

Disappointing

HKOI 2007 Senior Q3 Statistics

Max : 100

Statistics

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung
Statistics
Problem
Description
Naïve Solution
50% Solution
70% Solution
100% Solution
Special Note

Disappointing

HKOI 2007 Senior Q3 Statistics

Max: 100
\#Max: 3

Statistics

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics

Problem
Description
Naïve Solution
50% Solution
70% Solution
100% Solution
Special Note

Disappointing

HKOI 2007 Senior Q3 Statistics

Max: 100
\#Max: 3
Min: 0

Statistics

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson Leung

Statistics
Problem
Description
Naïve Solution
50% Solution
70% Solution
100% Solution
Special Note

Disappointing

HKOI 2007 Senior Q3 Statistics

Max: 100
\#Max: 3
Min: 0
Mean: 28.627

Statistics

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson Leung

Statistics
Problem
Description
Naive Solution
50% Solution
70% Solution
100% Solution
Special Note

Disappointing

HKOI 2007 Senior Q3 Statistics

Max: 100
\#Max: 3
Min: 0
Mean : 28.627
Mode : 10

Statistics

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson Leung

Statistics
Problem
Description
Naïve Solution
50% Solution
70% Solution
100% Solution
Special Note

Disappointing

HKOI 2007 Senior Q3 Statistics

Max: 100
\#Max: 3
Min: 0
Mean: 28.627
Mode : 10
Std. Dev. : 30.423

Statistics

Olympiad in	
$\begin{aligned} & \text { Informatics } \\ & 2007 \end{aligned}$	
Senior	Disappointing
Question 3	
SOS	HKOl 2007 Senior Q3 Statistics
Hackson	
Leung	Max : 100
Statistics	\#Max : 3
Problem	Min : 0
Description	Mean : 28.627
Naïve Solution	M
50\% Solution	
70\% Solution	Std. Dev. : 30.423
100\% Solution	
Special Note	OrZ

Problem Description

Hong Kong Olympiad in Informatics

2007 Senior Question 3 SOS

Hackson
Leung

Statistics

Problem
Description
Naïve Solution
50\% Solution
70% Solution
100% Solution
Special Note

Problem Description

Hong Kong

 Olympiad in Informatics 2007 Senior Question 3 SOSHackson
Leung

- Given a $N \times M$ characters map, each character can be a brick or a space
Statistics
Problem
Description
Naïve Solution
50% Solution
70% Solution
100% Solution
Special Note

Problem Description

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50% Solution
70% Solution
100% Solution
Special Note

- Given a $N \times M$ characters map, each character can be a brick or a space
■ You can rotate each row to right or to left

Problem Description

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50% Solution
70% Solution
100% Solution
Special Note

■ Given a $N \times M$ characters map, each character can be a brick or a space

- You can rotate each row to right or to left

■ Find the minimum number of rotation such that there exists at least one column of N spaces

Naïve Solution

Abstract

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson Leung

\section*{Statistics}

Problem Description Naïve Solution 50% Solution 70% Solution 100% Solution Special Note

Naïve Solution

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

- Asking for combinations

Statistics
Problem
Description
Naïve Solution
50% Solution
70% Solution
100% Solution
Special Note

Naïve Solution

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics

Problem
Description
Naïve Solution
50% Solution
70% Solution
100% Solution
Special Note

- Asking for combinations
- Asking for optimal solution

Naïve Solution

```
Hong Kong
Olympiad in
Informatics
    2007
    Senior
    Question 3
        SOS
    Hackson
    Leung
```

Statistics
Problem
Description

- Asking for combinations
- Asking for optimal solution

■ Exhuastion!?

Naïve Solution

50\% Solution
70% Solution
100% Solution
Special Note

Naïve Implementation

Hong Kong

 Olympiad in Informatics2007 Senior Question 3 SOS

Hackson
Leung

Statistics

Problem
Description
Naïve Solution
50\% Solution
70% Solution
100% Solution
Special Note

Naïve Implementation

Naïve Implementation

Algorithm exhaustion(ROW, STEP)
Mark this configuration as visited
if ROW $=\mathrm{N}$ and At least one column has N spaces then
Answer $=$ Min(Answer, STEP)
else
While True do Rotate ROW to left
if current configuration is not visited then
Exhaustion(ROW+1, STEP+Number_of_Left_Rotation)
else
break
Return to original configuration \{Do the same for Right Rotation\}

Naïve Implementaion (Continued)

Hong Kong

 Olympiad in Informatics 2007 Senior Question 3 SOSHackson
Leung

Statistics

Problem

Description
Naïve Solution
50% Solution
70% Solution
100% Solution
Special Note

Naïve Implementaion (Continued)

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung
. Clumsy

Statistics

Problem
Description
Naïve Solution
50\% Solution
70% Solution
100% Solution
Special Note

Naïve Implementaion (Continued)

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics

Problem
Description
Naïve Solution
50\% Solution
70% Solution
100% Solution
Special Note

- Clumsy
- Risk of TLE

Naïve Implementaion (Continued)

```
Hong Kong
Olympiad in
Informatics
    2007
    Senior
Question 3
    SOS
    Hackson
    Leung
```

Statistics

■ Clumsy

- Risk of TLE

■ When you were implementing this, probably you can think of 50% Solution

Observation 1

Hong Kong Olympiad in Informatics

2007
Senior
Question 3 SOS

Hackson
Leung

Statistics

Problem
Description
Naïve Solution
50\% Solution
70% Solution
100% Solution
Special Note

Observation 1

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50\% Solution
70% Solution
100% Solution
Special Note

1 No need to search for all possible combinations

Observation 1

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50\% Solution
70% Solution
100\% Solution
Special Note

1 No need to search for all possible combinations
2 One row can have at most M different configurations

Observation 1

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50% Solution
70% Solution
100\% Solution
Special Note

1 No need to search for all possible combinations
2 One row can have at most M different configurations
3 For each character, we should know the number of minimum rotation made to "pull" a space to that position

Observation 1

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50\% Solution

1 No need to search for all possible combinations
2 One row can have at most M different configurations
3 For each character, we should know the number of minimum rotation made to "pull" a space to that position
4 Then we can find the minimum roration by comparing the sum

Observation 1

Hong Kong
Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50\% Solution

1 No need to search for all possible combinations
2 One row can have at most M different configurations
3 For each character, we should know the number of minimum rotation made to "pull" a space to that position
4 Then we can find the minimum roration by comparing the sum

5 If one level is rotated to left K times, it is equivalent to rotate to right $(M-K) \bmod M$ times

50% Solution - Implementation

```
Hong Kong
Olympiad in
Informatics
    2007
    Senior
Question 3
    SOS
    Hackson
    Leung
Statistics
Problem
Description
Naïve Solution
50% Solution
70% Solution
100% Solution
Special Note
```


50\% Solution - Implementation

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50% Solution
70\% Solution
100% Solution Special Note

50\% Solution

Algorithm 50\% Solution
MinRotation[][] $\leftarrow \infty$
MinRotation $[x][y] \leftarrow 0 \quad / / \exists x, y \rightarrow(x, y)$ is a space
for each character (r, c) do
if (r, c) is a space then
for $i \leftarrow 1$ to $M-1$ do
Update MinRotation at (r, c) rotates to left i times with i Update MinRotation at (r, c) rotates to right i times with i

$$
\text { Answer } \leftarrow \min _{1 \leq i \leq M}\left\{\sum_{j=1}^{N} \text { MinRotation }[j][i]\right\}
$$

50\% Solution - Implementation (Continued)

Hong Kong

 Olympiad in Informatics 2007 Senior Question 3 SOSHackson
Leung

Statistics

Problem
Description
Naïve Solution
50\% Solution
70% Solution
100% Solution
Special Note

50\% Solution - Implementation (Continued)

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics

Problem
Description
Naïve Solution
50\% Solution
70\% Solution
100% Solution
Special Note

- Easy to implement

50\% Solution - Implementation (Continued)

```
Hong Kong
Olympiad in
Informatics
    2007
    Senior
    Question 3
        SOS
    Hackson
    Leung
Statistics
Description
Naïve Solution
50% Solution
70% Solution
100% Solution
Special Note
```

- Easy to implement

■ Reduce memory usage

50\% Solution - Implementation (Continued)

```
Hong Kong
Olympiad in
Informatics
    2007
    Senior
    Question 3
        SOS
    Hackson
    Leung
Statistics
Problem
Description
Naïve Solution
50% Solution
70% Solution
100% Solution
Special Note
```

■ Easy to implement
■ Reduce memory usage
■ But still, it is not efficient enough to get 100% score

50\% Solution - Implementation (Continued)

```
Hong Kong
Olympiad in
Informatics
    2007
    Senior
Question 3
    SOS
    Hackson
    Leung
```

- Easy to implement

■ Reduce memory usage
■ But still, it is not efficient enough to get 100% score

- Runtime Complexity: $\mathcal{O}\left(N M^{2}\right)$

Observation 2

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics

Problem
Description
Naïve Solution
50\% Solution
70\% Solution
100% Solution
Special Note

Observation 2

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50\% Solution
70% Solution
100\% Solution
Special Note

1 The bottleneck is "How to find the nearest space to an element" efficiently

Observation 2

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50\% Solution
70% Solution
100\% Solution
Special Note

1 The bottleneck is "How to find the nearest space to an element" efficiently
2 Consider no rotating stuff first

Observation 2

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics

Problem
Description
Naïve Solution
50\% Solution
70% Solution
100\% Solutior
Special Note

1 The bottleneck is "How to find the nearest space to an element" efficiently
2 Consider no rotating stuff first

- Let P be a list storing the position of spaces in a row

Observation 2

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50\% Solution
70% Solution
100\% Solutior
Special Note

1 The bottleneck is "How to find the nearest space to an element" efficiently
2 Consider no rotating stuff first

- Let P be a list storing the position of spaces in a row
- e.g. bbsbsbbsbs

Observation 2

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50\% Solution
70% Solution
100\% Solution
Special Note

1 The bottleneck is "How to find the nearest space to an element" efficiently
2 Consider no rotating stuff first

- Let P be a list storing the position of spaces in a row
- e.g. bbsbsbbsbs
- $P=\{3,5,8,10\}$

Observation 2

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50\% Solution
70% Solution
100\% Solutior
Special Note

1 The bottleneck is "How to find the nearest space to an element" efficiently
2 Consider no rotating stuff first

- Let P be a list storing the position of spaces in a row
- e.g. bbsbsbbsbs
- $P=\{3,5,8,10\}$
- I want to know where is the nearest space with respect to the $6^{\text {th }}$ element

Observation 2

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50\% Solution
70% Solution
100\% Solution
Special Note

1 The bottleneck is "How to find the nearest space to an element" efficiently
2 Consider no rotating stuff first

- Let P be a list storing the position of spaces in a row
- e.g. bbsbsbbsbs
- $P=\{3,5,8,10\}$
- I want to know where is the nearest space with respect to the $6^{\text {th }}$ element
- 3? 5? 8? 10?

Observation 2

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50\% Solution
70% Solution
100\% Solution
Special Note

1 The bottleneck is "How to find the nearest space to an element" efficiently
2 Consider no rotating stuff first

- Let P be a list storing the position of spaces in a row
- e.g. bbsbsbbsbs
- $P=\{3,5,8,10\}$
- I want to know where is the nearest space with respect to the $6^{\text {th }}$ element
- 3? 5? 8? 10?
- Obviously P is sorted

Observation 2

Hong Kong
Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50% Solution
70% Solution
100\% Solution
Special Note

1 The bottleneck is "How to find the nearest space to an element" efficiently
2 Consider no rotating stuff first

- Let P be a list storing the position of spaces in a row
- e.g. bbsbsbbsbs

■ $P=\{3,5,8,10\}$

- I want to know where is the nearest space with respect to the $6^{\text {th }}$ element
- 3? 5? 8? 10?
- Obviously P is sorted

3 Binary Search can be applied

Observation 2

Hong Kong
Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50\% Solution
70\% Solution
100\% Solution
Special Note

1 The bottleneck is "How to find the nearest space to an element" efficiently
2 Consider no rotating stuff first

- Let P be a list storing the position of spaces in a row
- e.g. bbsbsbbsbs

■ $P=\{3,5,8,10\}$

- I want to know where is the nearest space with respect to the $6^{\text {th }}$ element
- 3? 5? 8? 10?
- Obviously P is sorted

3 Binary Search can be applied
4 How to deal with rotating stuff?

70\% Solution - Implementation

Hong KongOlympiad inInformatics
2007 Senior Question 3 SOS
HacksonLeung
Statistics
Problem
Description
Naïve Solution
50\% Solution
70\% Solution
100% Solution
Special Note

70\% Solution - Implementation

Hong Kong
Olympiad in Informatics 2007 Senior Question 3 SOS
Hackson Leung

70\% Solution - Implementation

Algorithm 70\% Solution
MinRotation[][] $\leftarrow \infty$
MinRotation $[x][y] \leftarrow 0 \quad / / \exists x, y \rightarrow(x, y)$ is a space for each character (r, c) do

Update MinRotation $[r][c] \leftarrow$ lower_bound (P, c)

$$
\text { Answer } \leftarrow \min _{1 \leq i \leq M}\left\{\sum_{j=1}^{N} \text { MinRotation }[j][i]\right\}
$$

70\% Solution - Implementation

70\% Solution - Implementation

Algorithm 70\% Solution
MinRotation[][] $\leftarrow \infty$
MinRotation $[x][y] \leftarrow 0 \quad / / \exists x, y \rightarrow(x, y)$ is a space for each character (r, c) do

Update MinRotation $[r][c] \leftarrow$ lower_bound (P, c)

$$
\text { Answer } \leftarrow \min _{1 \leq i \leq M}\left\{\sum_{j=1}^{N} \text { MinRotation }[j][i]\right\}
$$

lower_bound is a binary search function that returns the first position where value could be inserted without violating the ordering. (Ref.: http://www.sgi.com/tech/stl/lower_bound.html)

70\% Solution - Implementation (Continued)

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics

Problem
Description
Naïve Solution
50% Solution
70\% Solution
100\% Solution
Special Note

70\% Solution - Implementation (Continued)

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics

Problem
Description
Naïve Solution
50% Solution
70\% Solution
100\% Solution
Special Note

- A bit easier to implement

70\% Solution - Implementation (Continued)

Hong KongOlympiad inInformatics2007 Senior Question 3 SOS
Hackson
Leung
Statistics
Problem
Description
Naïve Solution
50% Solution
70% Solution
100\% Solution
Special Note

- A bit easier to implement
- Much efficient

70\% Solution - Implementation (Continued)

```
Hong Kong
Olympiad in
Informatics
    2007
    Senior
    Question 3
        SOS
    Hackson
    Leung
Statistics
Problem
Description
Naïve Solution
50% Solution
70% Solution
100% Solution
Special Note
```

- A bit easier to implement
- Much efficient
- Runtime Complexity: $\mathcal{O}(N M I g M)$ Note: $2^{x}=y \rightarrow x=\lg y$

70\% Solution - Implementation (Continued)

Hong KongOlympiad inInformatics2007 Senior

70\% Solution

100\% Solution
Special Note

- A bit easier to implement
- Much efficient
- Runtime Complexity: $\mathcal{O}(N M I g M)$

Note: $2^{x}=y \rightarrow x=\lg y$

- However, if M is sufficiently large, it will still risk TLE

Observation 3

Hong Kong

 Olympiad in Informatics 2007 Senior Question 3 SOSHackson
Leung

Statistics
Problem
Description
Naïve Solution
50\% Solution
70% Solution
100% Solution
Special Note

Observation 3

```
Hong Kong
Olympiad in
Informatics
    2007
    Senior
    Question 3
    SOS
    Hackson
    Leung
Statistics
Problem
Description
Naive Solution
50% Solution
70% Solution
100% Solution
Special Note
```

1 Still considering no rotation stuff

Observation 3

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50\% Solution
70\% Solution
100% Solution
Special Note

1 Still considering no rotation stuff

- If we know MinRotation[α], we can consider MinRotation $[\alpha+1]$ immediately.

Observation 3

Hong Kong
Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50\% Solution
70\% Solution
100% Solution
Special Note

1 Still considering no rotation stuff

- If we know MinRotation[α], we can consider MinRotation $[\alpha+1]$ immediately.
- Suppose we know MinRotation $[\alpha]$ corresponds to the space located at $P[\beta]$ which is on its left, then MinRotation $[\alpha+1]$ can be determined by one of the two "neighbouring" spaces.

Observation 3

Hong Kong
Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50\% Solution
70\% Solution
100% Solution

1 Still considering no rotation stuff

- If we know MinRotation[α], we can consider MinRotation $[\alpha+1]$ immediately.
- Suppose we know MinRotation $[\alpha]$ corresponds to the space located at $P[\beta]$ which is on its left, then MinRotation $[\alpha+1]$ can be determined by one of the two "neighbouring" spaces.
- $\alpha+1>P[\beta+1] \Rightarrow \operatorname{MinRotation}[\alpha+1]=$ $\min (|\alpha+1-P[\beta+1]|,|\alpha+1-P[\beta+2]|)$
- Otherwise, MinRotation $[\alpha+1]=\min (|\alpha+1-P[\beta]|,|\alpha+1-P[\beta+1]|)$

Observation 3

Hong Kong
Olympiad in Informatics 2007 Senior
Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50% Solution
70\% Solution
100% Solution

1 Still considering no rotation stuff

- If we know MinRotation[α], we can consider MinRotation $[\alpha+1]$ immediately.
- Suppose we know MinRotation $[\alpha]$ corresponds to the space located at $P[\beta]$ which is on its left, then MinRotation $[\alpha+1]$ can be determined by one of the two "neighbouring" spaces.
- $\alpha+1>P[\beta+1] \Rightarrow \operatorname{MinRotation}[\alpha+1]=$ $\min (|\alpha+1-P[\beta+1]|,|\alpha+1-P[\beta+2]|)$
- Otherwise,

$$
\operatorname{MinRotation}[\alpha+1]=\min (|\alpha+1-P[\beta]|,|\alpha+1-P[\beta+1]|)
$$

2 How about when $P[\beta]>\alpha$?

Observation 3

Hong Kong
Olympiad in Informatics 2007 Senior
Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50% Solution
70\% Solution
100% Solution
Special Note

1 Still considering no rotation stuff

- If we know MinRotation[α], we can consider MinRotation $[\alpha+1]$ immediately.
- Suppose we know MinRotation $[\alpha]$ corresponds to the space located at $P[\beta]$ which is on its left, then MinRotation $[\alpha+1]$ can be determined by one of the two "neighbouring" spaces.
- $\alpha+1>P[\beta+1] \Rightarrow \operatorname{MinRotation}[\alpha+1]=$ $\min (|\alpha+1-P[\beta+1]|,|\alpha+1-P[\beta+2]|)$
- Otherwise,

$$
\operatorname{MinRotation}[\alpha+1]=\min (|\alpha+1-P[\beta]|,|\alpha+1-P[\beta+1]|)
$$

2 How about when $P[\beta]>\alpha$?
3 Rotation stuff?!?!

Observation 3

Hong Kong
Olympiad in Informatics 2007 Senior
Question 3 SOS

Hackson
Leung

Statistics
Problem Description

1 Still considering no rotation stuff

- If we know MinRotation[α], we can consider MinRotation $[\alpha+1]$ immediately.
- Suppose we know MinRotation[α] corresponds to the space located at $P[\beta]$ which is on its left, then MinRotation $[\alpha+1]$ can be determined by one of the two "neighbouring" spaces.
- $\alpha+1>P[\beta+1] \Rightarrow \operatorname{MinRotation}[\alpha+1]=$ $\min (|\alpha+1-P[\beta+1]|,|\alpha+1-P[\beta+2]|)$
- Otherwise,

$$
\operatorname{MinRotation}[\alpha+1]=\min (|\alpha+1-P[\beta]|,|\alpha+1-P[\beta+1]|)
$$

2 How about when $P[\beta]>\alpha$?
3 Rotation stuff?!?!
4 Much much faster

Observation 3

Hong Kong
Olympiad in Informatics 2007 Senior
Question 3 SOS

Hackson
Leung

1 Still considering no rotation stuff

- If we know MinRotation[α], we can consider MinRotation $[\alpha+1]$ immediately.
- Suppose we know MinRotation[α] corresponds to the space located at $P[\beta]$ which is on its left, then MinRotation $[\alpha+1]$ can be determined by one of the two "neighbouring" spaces.
- $\alpha+1>P[\beta+1] \Rightarrow \operatorname{MinRotation}[\alpha+1]=$ $\min (|\alpha+1-P[\beta+1]|,|\alpha+1-P[\beta+2]|)$
- Otherwise,

$$
\operatorname{MinRotation}[\alpha+1]=\min (|\alpha+1-P[\beta]|,|\alpha+1-P[\beta+1]|)
$$

2 How about when $P[\beta]>\alpha$?
3 Rotation stuff?!?!
4 Much much faster
5 Runtime Coimplexity?

Special Note

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
Naïve Solution
50% Solution
70% Solution
100% Solution
Special Note

Special Note

Hong Kong Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

During Competition:
1 Don't use cin and cout!
2 Avoid using standard string and single character input.

Special Note

Hong Kong
Olympiad in Informatics 2007 Senior Question 3 SOS

Hackson
Leung

Statistics
Problem
Description
50% Solution
70% Solution
100% Solution
Special Note

During Competition:
1 Don't use cin and cout!
2 Avoid using standard string and single character input.
In HKOI Online Judge:
1 Time Limit is changed to 1 second
2 Input may critically affecting the runtime if you use an improper way.
3 Never use too much memory (Why?)
4 HKOI Online Judge only accept the best solution.
Don't try to submit every solution you've written.

