Competition

Chan, Siu On

January 8, 2005

Roadmap

- Problem
- Statistics
- 50% solution
- Greedy solution

Problem

－田忌賽馬
－Two teams of students take part in a one－on－one competition
－Find the maximum number of rounds which Team A can win

Statistics

- 15 full marks
- Highest mean
- Highest standard deviation

50% solution

- There are N ! ways of assigning students from Team A
- Enumerate them one by one and count the number of winning rounds
- When $N \leq 10$, it takes at most $10!=3628800$ iterations
- Implementation: recursion
- Enough to score 50 marks

Greedy solution

Idea

Keep assigning the strongest student from Team A to beat the student from Team B who is just weaker than him/her

Algorithm

1. Find the strongest student from Team A , call him/her A_{i}
2. Find the student from Team B who is just weaker than A_{i}, call him/her B_{j}
3. If B_{j} does not exist, terminate
4. Increase counter, remove A_{i} and B_{j} from consideration, iterate

Proof of correctness

Let A_{i} be the strongest student from Team A
Let B_{j} be the student from Team B who is just weaker than A_{i} Assume in an optimal assignment S, A_{i} competes with B_{l} and A_{k} competes with B_{j}
Further assume B_{l} and B_{j} are different students

Optimal assignment S

Proof of correctness

Let A_{i} be the strongest student from Team A
Let B_{j} be the student from Team B who is just weaker than A_{i} Assume in an optimal assignment S, A_{i} competes with B_{l} and A_{k} competes with B_{j}
Further assume B_{l} and B_{j} are different students
New assignment S^{\prime}

What happens if A_{i} and A_{k} exchange their competitors?

First case: $A_{i}>B_{l}$

- $A_{i}>B_{l}$ means A_{i} is stronger than B_{l}
- By swapping competitors, A_{i} can still win a round in S^{\prime}
- A_{k} now competes with $B_{l} \leq B_{j}$, and the result will not be worse

Optimal assignment S A_{i}

- B_{j}
B_{l}

New assignment S^{\prime}
$\Rightarrow A_{i} \xlongequal{\square} B_{j}$

- B_{l}

Second case: $A_{i} \leq B_{l}$

- A_{i} and A_{k} together win at most one round in S
- A_{i} and A_{k} together win at least one round in S^{\prime}

Optimal assignment S

New assignment S^{\prime}

- B_{l}
A_{i}
B_{j}

Conclusion

- There always exists an optimal assignment in which the strongest student from Team A competes with the one from Team B who is just weaker
- Clearly an $O\left(N^{2}\right)$ implementation is possible
- $O(N \log N)$ implementations also exist
- Keep it simple, stupid (KISS)

