

Chan, Siu On

January 8, 2005

Chan, Siu On

Competition

Roadmap

- ▶ Problem
- Statistics
- \blacktriangleright 50% solution
- Greedy solution

Problem

▶ 田忌賽馬

- ▶ Two teams of students take part in a one-on-one competition
- ▶ Find the maximum number of rounds which Team A can win

Statistics

- ▶ 15 full marks
- ▶ Highest mean
- ▶ Highest standard deviation

- There are N! ways of assigning students from Team A
- ▶ Enumerate them one by one and count the number of winning rounds
- When $N \leq 10$, it takes at most 10! = 3628800 iterations
- ► Implementation: recursion
 - Enough to score 50 marks

Idea

Keep assigning the strongest student from Team A to beat the student from Team B who is just weaker than him/her

Algorithm

- **1.** Find the strongest student from Team A, call him/her A_i
- 2. Find the student from Team B who is just weaker than A_i , call him/her B_j
- **3.** If B_j does not exist, terminate
- **4.** Increase counter, remove A_i and B_j from consideration, iterate

Proof of correctness

Let A_i be the strongest student from Team A Let B_j be the student from Team B who is just weaker than A_i Assume in an optimal assignment S, A_i competes with B_l and A_k competes with B_j Further assume B_l and B_j are different students

Proof of correctness

Let A_i be the strongest student from Team A Let B_j be the student from Team B who is just weaker than A_i Assume in an optimal assignment S, A_i competes with B_l and A_k competes with B_j Further assume B_l and B_j are different students

What happens if A_i and A_k exchange their competitors?

Chan, Siu On

Competition

First case: $A_i > B_l$

- $A_i > B_l$ means A_i is stronger than B_l
- ▶ By swapping competitors, A_i can still win a round in S'
- ► A_k now competes with $B_l \leq B_j$, and the result will not be worse

A_i and A_k together win at most one round in S
A_i and A_k together win at least one round in S'

Conclusion

- ▶ There always exists an optimal assignment in which the strongest student from Team A competes with the one from Team B who is just weaker
- Clearly an $O(N^2)$ implementation is possible
- $O(N \log N)$ implementations also exist
- Keep it simple, stupid (KISS)