Hice

Solution to Intersect HKOI 2003 Final Senior Question 4
 CHAN Siu Man

chan_siuman@acm.org

Hong Kong Olympiads in Informatics

Problem Statement

- Given sets \mathcal{A} and \mathcal{B}, find the intersection $(\mathcal{A} \cap \mathcal{B})$.

Problem Statement

- Given sets \mathcal{A} and \mathcal{B}, find the intersection $(\mathcal{A} \cap \mathcal{B})$.
- Sets are specified by intervals.

Intervals have the form $[a, b]$.
e.g. $\{1,3,4,5,7\}$ is specified by $[1,1],[3,5],[7,7]$

Problem Statement

- Given sets \mathcal{A} and \mathcal{B}, find the intersection $(\mathcal{A} \cap \mathcal{B})$.
- Sets are specified by intervals.

Intervals have the form $[a, b]$.
e.g. $\{1,3,4,5,7\}$ is specified by $[1,1],[3,5],[7,7]$

- Standardized sets:
- use the minimum number of intervals; and
- list the intervals in increasing order.

Problem Statement

- Input range:

Problem Statement

- Input range:
- $1 \leqslant n_{1}, n_{2} \leqslant 1000$ $n 1, n 2$ are the numbers of intervals of \mathcal{A} and \mathcal{B}.

Problem Statement

- Input range:
- $1 \leqslant n_{1}, n_{2} \leqslant 1000$
$n 1, n 2$ are the numbers of intervals of \mathcal{A} and \mathcal{B}.
- $|a|,|b| \leqslant 10^{9}$
all intervals have the form $[a, b]$

Problem Statement

- Input range:
- $1 \leqslant n_{1}, n_{2} \leqslant 1000$ $n 1, n 2$ are the numbers of intervals of \mathcal{A} and \mathcal{B}.
- $|a|,|b| \leqslant 10^{9}$
all intervals have the form $[a, b]$
- Scoring:

For 50% of input, $|a|,|b| \leqslant 10000$.

Solution 1

Hice

- Idea: store numbers in boolean arrays; scan and output

Solution 1

Hice

- Idea: store numbers in boolean arrays; scan and output
- Complexity: $O(R)$, where R is the range

Solution 1

HHCe

- Idea: store numbers in boolean arrays; scan and output
- Complexity: $O(R)$, where R is the range
- Expected scoring: 50

Solution 1

HHCe

- Idea: store numbers in boolean arrays; scan and output
- Complexity: $O(R)$, where R is the range
- Expected scoring: 50
- Data Structure: array

Solution 1

```
InTERSECTION1 (\mathcal{A, B})
    for i}\leftarrow-10001 to 1000
    do Count [i]}\leftarrow
    3
4
7
    do for }j\leftarrow\mathcal{I}\mathrm{ .start to }\mathcal{I}\mathrm{ .end
10
11
12 for i}\leftarrow-10000 to 1000
13 do if Count [i] = 2 and Count [i-1] }\not=
14
1 5
```

do for }j\leftarrow\mathcal{I}.start to I .end

```
do for }j\leftarrow\mathcal{I}.start to I .end
do Count[j]}\leftarrow\operatorname{Count}[j]+
do Count[j]}\leftarrow\operatorname{Count}[j]+
```

for each interval }\mathcal{I}\mathrm{ of }\mathcal{A

```
for each interval }\mathcal{I}\mathrm{ of }\mathcal{A
for each interval }\mathcal{I}\mathrm{ of }\mathcal{B
    do Count[j]}\leftarrow\operatorname{Count}[j]+
then StartNEWIntERVAL(i)
    if Count [i] =2 and Count [i-1] =2
        then EndCurrentInterval(i-1)
```


Solution 1

```
InTERSECTION1 (\mathcal{A, B})
    for i}\leftarrow-10001 to 1000
    do Count [i]}\leftarrow
        Clear counter array
    for each interval }\mathcal{I}\mathrm{ of }\mathcal{A
    do for }j\leftarrow\mathcal{I}\mathrm{ .start to I I.end
        do Count [j]}\leftarrow\operatorname{Count}[j]+
    for each interval }\mathcal{I}\mathrm{ of }\mathcal{B
    do for }j\leftarrow\mathcal{I}\mathrm{ .start to I I.end
    do Count [j]}\leftarrow\operatorname{Count [j]+1
    for }i\leftarrow-10000\mathrm{ to }1000
    do if Count [i] = 2 and Count [i-1] }\not=
        then StartNEWInTERVAL(i)
        if Count [i] =2 and Count [i-1] =2
        then EndCurrentInterval(i-1)
```


Solution 1

```
INTERSECTION1(\mathcal{A},\mathcal{B})
    for }i\leftarrow-10001\mathrm{ to }1000
    do Count [i]}\leftarrow
         Clear counter array
    for each interval }\mathcal{I}\mathrm{ of }\mathcal{A
    do for }j\leftarrow\mathcal{I}\mathrm{ .start to I I.end
        do Count [j]}\leftarrow\operatorname{Count [j] + 1
        Store all numbers in \mathcal{A into counter array}
    for each interval }\mathcal{I}\mathrm{ of }\mathcal{B
    do for }j\leftarrow\mathcal{I}\mathrm{ .start to II.end
        do Count[j]}\leftarrow\operatorname{Count}[j]+
        Store all numbers in \mathcal{B into counter array}
    for }i\leftarrow-10000\mathrm{ to }1000
    do if Count [i] = 2 and Count [i-1] }\not=
        then StartNEWInTERVAL(i)
        if Count [i] }=2\mathrm{ and Count [i-1] =2
        then EndCurrentInterval(i-1)
18
```


Solution 1

```
INTERSECTION1 (\mathcal{A, B})
    for }i\leftarrow-10001\mathrm{ to }1000
    do Count [i]}\leftarrow
         Clear counter array
    for each interval }\mathcal{I}\mathrm{ of }\mathcal{A
    do for }j\leftarrow\mathcal{I}\mathrm{ .start to I I.end
    do Count[j]}\leftarrow\operatorname{Count[j]+1
        Store all numbers in \mathcal{A into counter array}
    for each interval }\mathcal{I}\mathrm{ of }\mathcal{B
    do for }j\leftarrow\mathcal{I}\mathrm{ .start to I. .end
    do Count[j]}\leftarrow\operatorname{Count}[j]+
         Store all numbers in \mathcal{B into counter array}
    for }i\leftarrow-10000\mathrm{ to }1000
    do if Count [i] = 2 and Count [i-1] }\not=
        then StartNEwInTERVAL(i)
            A new interval begins at number i
        if Count [i] =2 and Count [i-1] =2
        then EndCurrentInterval(i-1)
                        The current interval ends at number i-1
```


Solution 2

- Idea: operate on endpoints of intervals; sort and merge

Solution 2

- Idea: operate on endpoints of intervals; sort and merge
- Complexity: $O\left(n^{2}\right)$ or $O\left(n_{1}^{2}+n_{2}^{2}\right)$

Solution 2

- Idea: operate on endpoints of intervals; sort and merge
- Complexity: $O\left(n^{2}\right)$ or $O\left(n_{1}^{2}+n_{2}^{2}\right)$
- Expected scoring: 100

Solution 2

- Idea: operate on endpoints of intervals; sort and merge
- Complexity: $O\left(n^{2}\right)$ or $O\left(n_{1}^{2}+n_{2}^{2}\right)$
- Expected scoring: 100
- Data Structure: list \mathcal{L}

Solution 2

Hice

```
IntERSECTION2(\mathcal{A, B})
    1 \mp@code { f o r ~ e a c h ~ i n t e r v a l ~ I \mathcal { ~ i n ~ } \mathcal { A } }
    2 do Add I.start to L
    3 Add \mathcal{I}.end to L
    Remembers whether it is a start point or end point
    4 \text { for each interval } \mathcal { I } \text { in } \mathcal { B }
    5 \mp@code { d o ~ A d d ~ I . s t a r t ~ t o ~ L }
    6 Add \mathcal{I}.end to L
    Sort L
    8 C}\leftarrow
    for }i\leftarrow0\mathrm{ to }\mathcal{L}\mathrm{ .length
d0 do if }\mathcal{L}[i] is a start point of some interval
11 then C}\leftarrowC+
12 if C=2
13
14
15
1 6
1 7
```

```
            then StartNewInterval(\mathcal{L}[i])
```

 then StartNewInterval(\mathcal{L}[i])
 else }\triangleright\mathcal{L}[i]\mathrm{ is a end point of some interval
 else }\triangleright\mathcal{L}[i]\mathrm{ is a end point of some interval
 if C=2
 if C=2
 then EndCurrentInterval(\mathcal{L}[i])
 then EndCurrentInterval(\mathcal{L}[i])
 C}\leftarrowC-
    ```
        C}\leftarrowC-
```


Solution 2

Hice

```
IntERSECTION2(\mathcal{A, }\mathcal{B})
    1 \text { for each interval } \mathcal { I } \text { in } \mathcal { A }
    2 do Add \mathcal{I}.start to L
    3 Add \mathcal{I}.end to L\mathcal{L}}\quad\triangleright\mathrm{ Remembers whether it is a start point or end point
    for each interval }\mathcal{I}\mathrm{ in }\mathcal{B
    5 \mp@code { d o ~ A d d ~ I . s t a r t ~ t o ~ L }
    6 Add \mathcal{I}.end to L
    7 Sort L L D Time critical step
    8 C\leftarrow0
    9 for }i\leftarrow0\mathrm{ to }\mathcal{L}\mathrm{ .length
10 do if }\mathcal{L}[i] is a start point of some interva
11 then C}\leftarrowC+
            if C=2
            then StartNewInterval(\mathcal{L}[i])
        else }\triangleright\mathcal{L}[i] is a end point of some interva
        if C=2
            then EndCurrentInterval(\mathcal{L}[i])
        C\leftarrowC-1
```


Solution 2

Hice

```
INTERSECTION2(\mathcal{A},\mathcal{B})
    1 \text { for each interval } \mathcal { I } \text { in } \mathcal { A }
    2 \mp@code { d o ~ A d d ~ \mathcal { I } . s t a r t ~ t o ~ L }
    3 Add \mathcal{I}.end to }\mathcal{L
    Remembers whether it is a start point or end point
    4 ~ f o r ~ e a c h ~ i n t e r v a l ~ \mathcal { I } \text { in } \mathcal { B }
    5 \mp@code { d o ~ A d d ~ \mathcal { I } . s t a r t ~ t o ~ L }
    6 Add \mathcal{I}.end to }\mathcal{L
    Sort L
        \ Time critical step
    C\leftarrow0}\quad\triangleright\mathrm{ Counter for number of overlapping intervals
    for }i\leftarrow0\mathrm{ to L. .length
10 do if }\mathcal{L}[i] is a start point of some interval
11 then }C\leftarrowC+
12 if }C=
13
14
            then StartNEWInterval(\mathcal{L}[i])
        else }\triangleright\mathcal{L}[i] is a end point of some interva
        if C=2
            then EndCurRENTIntERVAL (\mathcal{L}[i])
        C\leftarrowC-1
```


Solution 2

HHCe

```
IntERSECTION2(\mathcal{A, B})
    1 \text { for each interval } \mathcal { I } \text { in } \mathcal { A }
    2 \mp@code { d o ~ A d d ~ I . s t a r t ~ t o ~ L }
    3 Add \mathcal{I}.end to L
    for each interval I\mathcal{I}}\mathrm{ in
    do Add \mathcal{I}.start to L
            Add I. end to L
    Sort \mathcal{L}}\quad\triangleright\mathrm{ Time critical step
    C\leftarrow0 D Counter for number of overlapping intervals
    for }i\leftarrow0\mathrm{ to L.length
10 do if }\mathcal{L}[i] is a start point of some interval
11 then C}\leftarrowC+
            if C=2 }\triangleright\mathrm{ start of 2 overlapping intervals
            then StartNewInterval(\mathcal{L}[i])
        else }\triangleright\mathcal{L}[i] is a end point of some interva
        if C=2 }\quad\triangleright\mathrm{ end of 2 overlapping intervals
            then EndCurrentInterval(\mathcal{L}[i])
        C\leftarrowC-1
```


Solution 2

Implementations for sorting:

Solution 2

Implementations for sorting:

- Bubble sort $O\left(n^{2}\right)$

Solution 2

Implementations for sorting:

- Bubble sort $O\left(n^{2}\right)$
- Merge sort $O(n \lg n)$

Solution 2

Implementations for sorting:

- Bubble sort $O\left(n^{2}\right)$
- Merge sort $O(n \lg n)$
- Quick sort $O(n \lg n)$

Solution 2

Implementations for sorting:

- Bubble sort $O\left(n^{2}\right)$
- Merge sort $O(n \lg n)$
- Quick sort $O(n \lg n)$
- Merging of two sorted array $O(n)$

Solution 2

Implementations for sorting:

- Bubble sort $O\left(n^{2}\right)$
- Merge sort $O(n \lg n)$
- Quick sort $O(n \lg n)$
- Merging of two sorted array $O(n)$

Note: All of the above score full marks!

Extensions

HHCe

What is the solution, if the question:

Extensions

HHCe

What is the solution, if the question:

- asks for other operations of sets

Extensions

HHCe

What is the solution, if the question:

- asks for other operations of sets
- union $(\mathcal{A} \cup \mathcal{B})$.

Extensions

HHCe

What is the solution, if the question:

- asks for other operations of sets
- union $(\mathcal{A} \cup \mathcal{B})$.
- set difference $(\mathcal{A}-\mathcal{B})$.

Extensions

HHCe

What is the solution, if the question:

- asks for other operations of sets
- union $(\mathcal{A} \cup \mathcal{B})$.
- set difference $(\mathcal{A}-\mathcal{B})$.
- symmetric difference $(\mathcal{A} \oplus \mathcal{B})$.

Extensions

HHCe

What is the solution, if the question:

- asks for other operations of sets
- union $(\mathcal{A} \cup \mathcal{B})$.
- set difference $(\mathcal{A}-\mathcal{B})$.
- symmetric difference $(\mathcal{A} \oplus \mathcal{B})$.
- compliment $(\overline{\mathcal{A}})$.

Extensions

What is the solution, if the question:

- asks for other operations of sets
- union $(\mathcal{A} \cup \mathcal{B})$.
- set difference $(\mathcal{A}-\mathcal{B})$.
- symmetric difference $(\mathcal{A} \oplus \mathcal{B})$.
- compliment $(\overline{\mathcal{A}})$.
- asks for intersection of multiple sets: $\mathcal{A} \cap \mathcal{B} \cap \mathcal{C} \cap \ldots$

Extensions

What is the solution, if the question:

- asks for other operations of sets
- union $(\mathcal{A} \cup \mathcal{B})$.
- set difference $(\mathcal{A}-\mathcal{B})$.
- symmetric difference $(\mathcal{A} \oplus \mathcal{B})$.
- compliment $(\overline{\mathcal{A}})$.
- asks for intersection of multiple sets: $\mathcal{A} \cap \mathcal{B} \cap \mathcal{C} \cap \ldots$
- allows non-stardardized input.

