HKOI 2004 Final

Traffic Lights Solution

General Problem Solving

- Defining the Problem
- Developing a Model
- Acquiring Input Data
- Developing a Solution
- Testing the Solution
- Analyzing the Results
- Implementing the Results

Solving HKOI Problems

- Understand the Problem Statement
- Observe the Hints
- Identify Possible Solutions
- Evaluate the Candidate Solutions
- Implement a Solution
- Test the Implementation
- Hand-in the Implementation

Traffic Lights

- Phoebe is on a helicopter flying over a city. Suddenly she finds that all the traffic lights in the city turn from Green to Red at the same time. She thinks that this happens very rarely. Her problem is that how long it will take until this happens again.
- She does some research on all the N traffic lights in the city. The traffic light $i(1 \leq I \leq N)$ stays at green for G_{i} seconds, then it switches to red immediately and stays for R_{i} seconds. Then it switches to green immediately again. Being a good friend of her, you are asked to solve the problem.

Traffic Lights

- Phoebe is on a helicopter flying over a city. Suddenly she finds that all the traffic lights in the city turn from Green to Red at the same time. She thinks that this happens very rarely. Her problem is that how long it will take until this happens again.
- She does some research on all the N traffic lights in the city. The traffic light $i(1 \leq I \leq N)$ stays at green for G_{i} seconds, then it switches to red immediately and stays for R_{i} seconds. Then it switches to green immediately again. Being a good friend of her, you are asked to solve the problem.

Simplified Traffic Lights

- All turn from green to red same time.
- How long happens again.
- N traffic lights.
- Green for G_{i} seconds.
- Red for R_{i} seconds.

What is the problem about?

- Lowest Common Multiple
- Of what?
- Max=? How many?
- The fact is: many of you demonstrated me that you know it is a problem of LCM!

How to solve LCM?

- Try all!

Algorithm 1

1. $\operatorname{read}(v[1 . . n])$

2. $\mathrm{lcm} \leftarrow 0$ What is largest possible LCM?
3. do
4.
5.
6.
7.
8.

Icm $\leftarrow \mathrm{Icm}+1$ divisible \leftarrow true How large is n ? for $\mathrm{i} \leftarrow 1$..n do
if Icm mod $v[i] \neq 0$ then divisible \leftarrow false
9. while not divisible
10. write(lcm)

Runtime Analysis

- Number of Innermost Loops $=2^{31} \times$ $20 \approx 42 G$
- The current fastest CPU for PC runs at 3.2 GHz

How to find LCM?

- Try all multiples of the smallest number
- Will it work better?

How to find LCM?

- Try all multiples of the largest number
- Will it work better?
- Yes!
- We have to learn what is worst case scenario.

Algorithm 2

1.	$\operatorname{read}(\mathrm{v}[1 . . \mathrm{n}])$
2.	$\max \leftarrow \mathrm{v}[1]$
3.	for $\mathrm{i} \leftarrow 2 . . \mathrm{n}$ do
4.	if $v[i]>\max$ then
5.	$\max \leftarrow \mathrm{v}[\mathrm{i}]$
6.	$\mathrm{lcm} \leftarrow 0$
7.	do
8.	$\mathrm{lcm} \leftarrow \mathrm{lcm}+$ max
9.	divisible \leftarrow true
10.	for $\mathrm{i} \leftarrow 1 . . \mathrm{n}$ do
11.	if lcm modv[i] $\neq 0$ then
12.	divisible \leftarrow false
13.	while not divisible
14.	write(lcm)

Algorithm 2 Worst Case

- When will there be a large LCM but small "largest input"?
- LCM $=2^{4} \times 3 \times 5 \times 7 \times 11 \times 13 \times 17$ $\times 19 \times 23=1784742960>2^{30}$
- LCM $\div 23 \times 20 \approx 1.5 \mathrm{G}$
- How many Hz for each loop?
- Probably the algorithm is about 10 times too slow.

How to solve LCM?

If you havea formal procedure your computer can doit. It is only a prodem of how fast you can codeit, and how fast your computer can run it.

Algorithm 3

1. $\quad \operatorname{read}(\mathrm{v}[1 . . n])$
2. product $\leftarrow 1$
3. for $\mathrm{p} \leftarrow 2 . .200$ do

4.
5.
6.
7.
8.
9.
10.
11.
12.
13. write(product)

How to solve LCM?

- Why LCM is more difficult than GCD/HCF?
- LCM is as easy as GCD if ...
- there are only 2 numbers
- LCM(...(LCM(LCM $\left.\left.\left.\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right), \mathrm{v}_{3}\right), \ldots\right), \mathrm{v}_{n}\right)$
- How to do LCM for big numbers?
- Utilize the asymmetry.

Algorithm 4

1. $\operatorname{read}(v[1 . . n])$
2. $\quad \mathrm{lcm} \leftarrow \mathrm{v}[1]$
3. \quad for $i \leftarrow 2$..n do
4.
5.
6.
7.
8. write(lcm)

Problem Solving

How to find LCM?

- A fact that you may not observe:
- $\operatorname{LCM}(\mathrm{A}, \mathrm{B}) \times \operatorname{GCD}(\mathrm{A}, \mathrm{B})=\mathrm{A} \times \mathrm{B}$
- What does this mean?
- We can use solution to GCD to solve LCM.
- How?
- Euclidean Algorithm

Euclidean Algorithm

1	$\begin{aligned} & 96 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 36 \\ & \hline \end{aligned}$	1
1	$\begin{aligned} & 36 \\ & 24 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \\ & \hline \end{aligned}$	2
	12		

Algorithm 5

1.	$\quad \operatorname{read}(v[1 . . n])$
2.	lcm $\leftarrow v[1]$
3.	for $i \leftarrow 2 . . n$ do
4.	$p \leftarrow I c m$
5.	$q \leftarrow v[i]$

while $p \neq 0$ and $q \neq 0$ do
7.
8.
9.
10.
11. write(lcm)

How to find GCD?

- One more way to find GCD (For Your INTEREST Only)
- If both p and q are even, $\operatorname{GCD}(p, q)$ $=2 \times \operatorname{GCD}(\mathrm{p} / 2, \mathrm{q} / 2)$
- If p is odd and q is even, $\operatorname{GCD}(p, q)$
$=\operatorname{GCD}(p, q / 2)$
- If both p and q are odd, $\operatorname{GCD}(p, q)$

$$
=\operatorname{GCD}(|p-q|, p)=\operatorname{GCD}(|p-q|, q)
$$

- So? Left as an exercise for you.

