
2023 Team Formation Test

Task Overview

ID Name Time Limit Memory Limit Subtasks

T231 Facility Location 2�000 s 768 MB 5 + 13 + 18 + 15 + 30 + 13 + 6

T232 Challenge of Hanoi 2�000 s 768 MB 3 + 6 + 40 + 29 + 22

T233 The World Tour 1�000 s 768 MB 11 + 18 + 23 + 32 + 16

T234 Complete the Sequence 1�000 s 768 MB 14 + 36 + 27 + 23

Notice:

All tasks are divided into subtasks� You need to pass all test cases in a subtask to get points�
There is an attachment package that you can download from the contest system, containing sample graders, sample
implementations, example test cases, and compile and run scripts�
When testing your programs with the sample grader, your input should match the format and constraints from the task
statement, otherwise, unspeci�ed behaviors may occur�
In sample grader inputs, every two consecutive tokens on a line are separated by a single space, unless another format is
explicitly speci�ed�
The task statements specify signatures using generic type names void , bool , int , int64 , int[]  �array� and
int[][]  �array of array��
In C++, the graders use appropriate data types or implementations, as listed below:

void bool int int64 int[] int[][] length of array a

void bool int int64 std::vector<int> std::vector<std::vector<int>> a.size()

2023 Team Formation Test

1/19



Time Limit: 2�000 s � Memory Limit: 768 MBT231 - FACILITY LOCATION
As population grows rapidly in Hackerland, a new town, Linearville, is being built� The town consists of a single road which we
can regard as a number line, and the location of each house on the road is represented by a single integer�

More formally, let there be N houses, we can represent their locations as A0, A1, … , AN−1 in non-decreasing order� Note that
it is allowed for two houses to be at the same location �Hackerland is very technologically advanced and can wrap space-time��

As part of the planning for the town, a water supply system is needed, and the council has scouted M possible locations to build
groundwater pumping facilities, with their locations being B0, B1, … , BM−1 in strictly increasing order� Note that the
potential locations of the facilities are distinct, but the location of a potential facility might coincide with that of a house �again,
they can wrap space-time��

Of the M candidate locations, exactly K of them are to be chosen, and pumping facilities will be built at those locations�
Afterwards, water pipes will need to be installed to connect the facilities to the houses� Each unit length of water pipe is able to
transfer one unit of water for one unit along the number line, while each house requires one unit of water �so you may need
parallel pipes for capacity�� Assuming each pumping facility can produce in�nite water, your task is to �nd a selection of K

locations to minimise the total length of pipes required�

IMPLEMENTATION DETAILS
You should implement the following procedure:

pair<int64, int[]> choose_locations(int N, int M, int K, int[] A, int[] B)

N : The number of houses�
M : The number of candidate locations for the pumping facilities�
A, B: Arrays of length N and M respectively, representing the locations of houses and candidate locations for pumping
facilities, respectively�
K: Number of locations to be chosen�

The procedure choose_locations  is called once per test case� The procedure should return a pair containing an integer and
an array of integers, denoting the minimum length of pipe required and the chosen locations, respectively� You may output the
chosen locations in any order� If there are multiple ways to choose locations with the same minimum total length, return any�

SCORING
For each test case, if you return the correct minimum length and a correct optimal sequence of K locations, you score 100% on
the test case�

Otherwise, if you return the correct minimum length and any array, you score 80% on the test case� Otherwise, you score 0%
on the test case�

The points you get on a subtask is the minimum points you score across all test cases in the subtask�

EXAMPLE
Consider the following call:

choose_locations(6, 3, 2, [1, 2, 3, 7, 8, 9], [1, 5, 9])

2023 Team Formation Test

2/19



Here we can see the optimal way is to choose locations 1 and 9� Then, the pipe lengths required for the houses to connect to the
nearest pumping station are [0, 1, 2, 2, 1, 0], so the total pipe length is 6�

Hence, your program should return (6, [1, 9]) �

SAMPLE GRADER
The sample grader reads the input in the following format:

The �rst line consists of three integers N , M and K�
The second line consists of N integers A0 to AN−1�
The third line consists of M integers B0 to BM−1�

The sample grader outputs two lines, with the �rst line being the minimum length returned, and the second being the array of
locations returned�

SAMPLE TESTS

Input Output

1 6 3 2
1 2 3 7 8 9
1 5 9

6
1 9

It is also �ne to return (6, [9, 1]) �

2 6 3 2
1 2 3 7 8 9
1 5 9

6
-1 123456789

This output gets 80% of the points�

3 5 3 1
1 8 11 14 14
8 10 12

20
10

4 6 2 2
1 2 3 4 5 6
0 100

21
0 100

2023 Team Formation Test

3/19



SUBTASKS
For all cases:
1 ≤ N ≤ 50000

1 ≤ M ≤ 50000

1 ≤ K ≤ min(N , M)

0 ≤ A0 ≤ ⋯ ≤ AN−1 ≤ 109

0 ≤ B0 < ⋯ < BM−1 ≤ 109

Points Constraints

1 5 K = 1

2 13 N , M ≤ 40

3 18 N , M ≤ 100

4 15 N , M ≤ 400

5 30 N , M ≤ 3000

6 13 N , M ≤ 20000

7 6 No additional constraints

2023 Team Formation Test

4/19



2023 Team Formation Test

5/19



Time Limit: 2�000 s � Memory Limit: 768 MBT232 - CHALLENGE OF HANOI
Once upon a time, there was a master who was known for his great wisdom� One day, he decided to challenge his disciple, a
monk, with a puzzle - the Tower of Hanoi�

The master presented the monk with three rods and a series of disks of varying sizes� He then introduced the following rules:

The 3 rods are labelled X, Y , and Z�
There are N disks, and all of the disks are di�erent in size�
Initially, the disks were arranged in a neat stack on rod X, starting with the largest disk at the bottom and gradually
decreasing in size towards the top�
The goal of the puzzle is to transfer the entire stack of disks to rod Z�
The monk can only move one disk at a time� A disk can only be moved when it is on the top of a stack, and a larger
disk is never placed on top of a smaller one� It could be moved from any rod to any rod as long as it satis�es this
constraint�

Figure 1: A setup of Tower of Hanoi �from Wikipedia�

The master planned to teach a lesson about how Tower of Hanoi represented the challenges that we face in life, and that they
must be tackled one step at a time with patience� However, the monk has a programming background, he quickly devises a plan
to solve the problem with the power of recursion�

The monk explained the concept of recursion to the master� He told the master, "the key to solving this puzzle is to break it
down into smaller sub-problems", and then proceeded to write the following pseudocode:

function Hanoi(N, Start, End, Other)
  if (N == 1):
    Move(Start, End)
  else:
    Hanoi(N - 1, Start, Other, End)
    Move(Start, End)
    Hanoi(N - 1, Other, End, Start)

This recusion program will generate a list of M = 2N − 1 commands with the Move  procedure� For example, when N = 3 �i�e�
calling Hanoi(3, X, Z, Y) �, the list of commands are:

1: X → Z
2: X → Y
3: Z → Y
4: X → Z
5: Y → X
6: Y → Z
7: X → Z

2023 Team Formation Test

6/19



The monk �rst placed 3 disks on rod X following the rules� Simply applying the commands one by one to move the disks, from
command 1 to command 7, the monk successfully transferred all the disks from rod X to rod Z�

"You are a master on recursion", the master laughed, "but are you a master on handling query and update operations?"

First, the master clear all rods and place all N disks on rod X following the rules� After that, the master called
Hanoi(N, X, Z, Y)  to generate the list of M = 2N − 1 commands, and numbered them from 1 to 2N − 1 in order� Then,
the monk needs to handle Q operations that happen in chronological order� Initially, all M commands are visible�

1� execute(l) : Start applying the commands starting from the l-th command, �nd whether all remaining commands can
be successfully executed, or �nd the position of the �rst invalid command�

A command is invalid when the monk tries to take a disk from an empty rod, or when some larger disks are
placed on other smaller disks after the command�
The execution process stops after the �rst invalid command�
A valid command executed will actually transfer the disk, a�ecting future commands and also future call to
execute �

2� update(l, r) : Toggle the visibility of commands [l. . r], i�e� For each command i where l ≤ i ≤ r, change command i
to invisible if it was visible, and vice versa� An invisible command will not be applied during execute �

"I understand that the problem can be challenging, but do not be discouraged", the master added, "tackle one step at a time with
patience, and you can solve every challenge on your way�"

You are the monk, please solve the master's challenge�

IMPLEMENTATION DETAILS
You should implement the following procedures:

void init(int N)

N : the number of disks�
This procedure is called exactly once, before any calls to execute  and update �

int execute(int l)

l: the starting position to apply the commands�
You should return the position of the �rst invalid command� If all remaining commands can be successfully executed,
return 0 instead�
Note that the commands executed in this call will a�ect the initial state of future calls�
This procedure and update  are called exactly Q times combined� It is guaranteed that this procedure will be called at
least once�

void update(int l, int r)

l: the starting position of commands to be toggled�
r: the ending position of commands to be toggled�
Toggle the visibilities of commands [l. . r]�
This procedure and execute  are called exactly Q times combined�

2023 Team Formation Test

7/19



EXAMPLE
Consider the following call:

init(3)

When N = 3, the command sequence is X → Z, X → Y , Z → Y , X → Z, Y  → X, Y  → Z, X → Z�

First, 3 disks are placed in rod X� For explaining, let's number the smallest disk with 1, the middle-sized disk with 2, and the
largest disk with 3� Initially, disk 1 is on the top of the stack, while disk 3 is on the bottom of the stack�

Let's say the grader called execute(2) �

The 2-nd command X → Y  is successful�
But the 3-rd command Z → Y  is invalid since rod Z is empty�

Therefore, the call should return 3�

Let's say the grader called update(5, 6)  next� The command sequence becomes X → Z, X → Y , Z → Y , X → Z, n/a, n/a

, X → Z�

Let's say the grader called execute(4)  next�

The 4-th command X → Z is successful�
The 5-th and 6-th commands are not applied�
But the 7-th command X → Z is invalid since a bigger disk �disk 3� is placed on a smaller disk �disk 2��

Therefore, the call should return 7�

Let's say the grader called update(2, 5)  next� The command sequence becomes X → Z, n/a, n/a, n/a, Y  → X, n/a, X →
Z�

2023 Team Formation Test

8/19



Let's say the grader called execute(3)  next�

The 3-rd and 4-th commands are not applied�
The 5-th command Y  → X is successful�
The 6-th command is not applied�
The 7-th command X → Z is successful�

Therefore, the call should return 0�

SAMPLE GRADER
The sample grader reads the input in the following format:

The �rst line consists of two integers, N , Q�
The next Q lines each consist of a description of an operation� On the i-th line, the �rst integer ti denotes the type of
operation i�

If ti = 1, then an integer li follows, the grader will call execute(l_i) �
If ti = 2, then two integers li, ri follow, the grader will call update(l_i, r_i) �

The sample grader prints your answer in Q′ lines: �if execute  is called Q′ times�

On the i-th line, the answer for the i-th call to execute �

SAMPLE TESTS

Input Output

1 3 5
1 2
2 5 6
1 4
2 2 5
1 3

3
7
0

2023 Team Formation Test

9/19



SUBTASKS
For all cases:
1 ≤ N ≤ 18

1 ≤ Q ≤ 105

1 ≤ li ≤ 2N − 1 if ti = 1

1 ≤ li ≤ ri ≤ 2N − 1 if ti = 2

Points Constraints

1 3 N ≤ 10

Q ≤ 3000

2 6 There are at most 10 calls for execute

3 40 There are no calls for update

4 29 There are no calls for update  after any call for execute

5 22 No additional constraints

HINT
Be aware of the potentially tight memory limit�

2023 Team Formation Test

10/19



2023 Team Formation Test

11/19



Time Limit: 1�000 s � Memory Limit: 768 MBT233 - THE WORLD TOUR
Loudly Talk is a famous Cantopop boy group in Hackerland� They are organizing their �rst ever world tour concert in 2023�

There are N countries in the world� Countries are numbered from 0 to N − 1� There are M one-way direct �ights between
countries, the i-th �ight departs from country Ui and arrives at country Vi� No two �ights share the same pair of departing
country and arriving country� Members of Loudly Talk can only travel between countries using �ights�

The �rst concert of the world tour must be held at Hackerland �country 0�, and the last concert must be held at Byteland
�country N − 1� as these two countries have special meanings to them� During the world tour, they must hold exactly one
concert per day, but they cannot hold concerts in the same country for two consecutive days�

At the same time, Loudly Talk does not want to spend too much time on transport� Therefore, they demand that they can only
take at most one �ight between every two concerts� In other words, the country where the next concert is held must be directly
connected to the country where the current concert is held by a �ight�

Unfortunately, the manager of Loudly Talk has one more requirement� She wants to hold exactly C1 and C2 concerts in
countries P1 and P2 respectively�

Please help the manager to determine whether there exists a plan for the world tour such that all requirements above are
satis�ed� You are not required to �nd the plan, determining whether it is possible is su�cient�

IMPLEMENTATION DETAILS
You should implement the following procedure:

bool tour_possible(int N, int M, int[] U, int[] V, int P1, int C1, int P2, int C2)

N : The number of countries�
M : The number of one-way direct �ights�
U , V : Arrays of length M , representing the �ights�
P1, C1, P2, C2: Integers denoting the manager's requirement�

The procedure tour_possible  is called once per test case� The procedure should return a boolean value, which is true  if it
is possible to plan the world tour, false  otherwise�

EXAMPLE
Consider the following call:

tour_possible(2, 2, [0, 1], [1, 0], 0, 3, 1, 5)

Observe that the number of concerts held in country 0 and country 1 must be identical� Therefore, it is impossible to hold
exactly 3 concerts in country 0 and exactly 5 concerts in country 1�

Hence, your program should return false �

2023 Team Formation Test

12/19



Consider the following call:

tour_possible(6, 8, [0, 1, 2, 2, 0, 3, 4, 4], [1, 2, 1, 5, 3, 4, 3, 5], 0, 1, 3, 3)

One possible tour plan would be 0 → 3 → 4 → 3 → 4 → 3 → 4 → 5, where 1 concert is held in country 0 and 3 concerts are
held in country 3�

Hence, your program should return true �

SAMPLE GRADER
The sample grader reads the input in the following format:

The �rst line consists of two integers N and M �
The next M lines each contains two integers Ui and Vi�
The next line consists of two integers P1 and C1�
The next line consists of two integers P2 and C2�

The sample grader outputs either Yes  or No  on a single line, which corresponds to the return values true  and false
respectively�

SAMPLE TESTS

Input Output

1 2 2
0 1
1 0
0 3
1 5

No

2 6 8
0 1
1 2
2 1
2 5
0 3
3 4
4 3
4 5
0 1
3 3

Yes

2023 Team Formation Test

13/19



SUBTASKS
For all cases:
2 ≤ N ≤ 105

1 ≤ M ≤ 2 × 105

0 ≤ Ui, Vi < N

Ui ≠ Vi

(Ui, Vi) ≠ (Uj, Vj) for i ≠ j

0 ≤ P1, P2 < N

P1 ≠ P2

0 ≤ C1 ≤ C2 ≤ 109

Points Constraints

1 11 C1 = C2 = 0

2 18 C1 = C2 = 1

3 23 C1 = 0

C2 > 1

4 32 P1 = 0
P2 = N − 1

5 16 No additional constraints

2023 Team Formation Test

14/19



2023 Team Formation Test

15/19



Time Limit: 1�000 s � Memory Limit: 768 MBT234 - COMPLETE THE SEQUENCE
"Fill in the blank to complete the sequence: ___, 2, 3, 4�" This is a question that every one of us has encountered during our
primary school days� To revive your childhood memories, you are also solving this type of problems today� The problem is as
follows:

There is an unknown function f , which takes an integer input from 0 to 255 �inclusive� and outputs an integer from 0 to 255
�inclusive�� You are given with an integer X �0 ≤ X ≤ 255�, denoting that the value of f(X) is unknown� You are free to call
the function f with any inputs from 0 to 255, except X� Your job is to deduce the value of f(X)� There are two types of tasks
�corresponding to two di�erent types of functions f� you have to solve�

In the �rst task type �S = 1�, it is guaranteed that f(x) = (Ax) mod B for some integral constants 0 ≤ A < B ≤ 256�
In the second task type �S = 2�, it is guaranteed that f(x) = (Ax) mod B for some integral constants
1 ≤ A < B ≤ 251, where B is a prime number�

However, there is a twist - you are solving this problem on a new type of computer processor�

The processor has access to M = 10000 di�erent 16-bit memory cells, which are called registers, and are numbered from 0 to
M − 1� We denote the registers by r[0], r[1], … , r[M − 1]� Each register stores an integer value from 0 to 216 − 1 = 65535�

Initially, the register r[0] stores the integer X, while all other registers are initialized to zero� The processor supports 10 types
of basic instructions to modify the values in the registers� Each instruction operates on one or more registers and stores the
output in one of the registers� The operations performed by each type of instruction are described below�

move(t, y): Copy the value in register y to register t�
store(t, v): Set register t to be equal to v, where v is an integer�
and(t, x, y): Take the bitwise-AND of registers x and y, and store the result in register t�
or(t, x, y): Take the bitwise-OR of registers x and y, and store the result in register t�
xor(t, x, y): Take the bitwise-XOR of registers x and y, and store the result in register t�
not(t, x): Take the bitwise-NOT of register x, and store the result in register t�
left(t, x, p): Shift all bits in register x to the left by p, and store the result in register t, the bit positions that have been
vacated by the shift operation are zero-�lled�
right(t, x, p): Shift all bits in register x to the right by p, and store the result in register t, the bit positions that have
been vacated by the shift operation are zero-�lled�
add(t, x, y): Add the integer values stored in register x and register y, and store the result in register t� The addition is
carried out modulo 216�
f(t, x): Execute the unknown function f on the value stored in register x, and store the result �that is, f(r[x])� in
register t� This operation is invalid if r[x] ≥ 256 or r[x] = X, and the program will be judged as incorrect if such
invalid operation occurs�

Additionally, the processor supports 3 types of expensive instructions� The use of each type of expensive instructions incurs a
great cost�

mult(t, x, y): Multiply the integer values stored in register x and register y, and store the result in register t� The
multiplication is carried out modulo 216�
mod(t, x, y): Divide the integer value stored in register x by that in register y, and store the remainder in register t�
This operation is invalid if r[y] = 0, and the program will be judged as incorrect if such invalid operation occurs�
cmp(t, x, y): If the integer value stored in register x is less than or equal to that in register y, store the value 65535 in
register t� Otherwise, store the value 0 in register t�

For both types of tasks, you need to produce a program, that is a sequence of instructions de�ned above� After executing the
program, the register r[0] should contain the value f(X), while the contents in all other registers can be arbitrary� It is
guaranteed that for all input data, there exists a unique solution f(X) that is consistent with all other outputs returned by f�

Provide programs consisting of at most 105 instructions each, that can solve these tasks�

2023 Team Formation Test

16/19



IMPLEMENTATION DETAILS
You should implement the following procedure:

void construct_instructions(int S)

S: the type of task�
This procedure is called exactly once and should construct a sequence of instructions to perform the required task�

This procedure should call one or more of the following procedures to construct a sequence of instructions:

void append_move(int t, int y)
void append_store(int t, int v)
void append_and(int t, int x, int y)
void append_or(int t, int x, int y)
void append_xor(int t, int x, int y)
void append_not(int t, int x)
void append_left(int t, int x, int p)
void append_right(int t, int x, int p)
void append_add(int t, int x, int y)
void append_f(int t, int x)
void append_mult(int t, int x, int y)
void append_mod(int t, int x, int y)
void append_cmp(int t, int x, int y)

Each procedure appends a move(t, y), store(t, v), and(t, x, y), or(t, x, y), xor(t, x, y), not(t, x), left(t, x, p),
right(t, x, p), add(t, x, y), f(t, x), mult(t, x, y), mod(t, x, y) or cmp(t, x, y) instruction to the program, respectively�
For all relevant instructions, t, x, y must be at least 0 and at most M − 1�
For all relevant instructions, t, x, y are not necessarily pairwise distinct�
For left and right instructions, p must be at least 0 and at most 16�
For store instructions, v must be at least 0 and at most 216 − 1 = 65535�

You may also call the following procedures to help you in testing your solution:

void append_print(int t)
void append_message(string msg)

Any call to these procedures will be ignored during the grading of your solution�
In the sample grader, this procedure appends a print(t) or message(msg) instruction to the program, respectively�
When the sample grader encounters a print(t) instruction during the execution of a program, it prints the contents of
the register t to standard error stream� t must satisfy 0 ≤ t ≤ M − 1�
When the sample grader encounters a message(msg) instruction during the execution of a program, it prints the
contents of the string msg to standard error stream�
Any call to these procedures does not add to the number of constructed instructions�
Note that the "Code" function in this online judge does NOT display the outputs in the standard error stream�

After appending the last instruction, construct_instructions  should return� The program is then evaluated on some
number of test cases, each specifying an input consisting of 3 integers A, B and X� X is the initial value of r[0] and A, B are
parameters describing the sequence�

2023 Team Formation Test

17/19



SCORING
If your program is incorrect, the score of your solution will be 0 in the subtask� Otherwise, let K be the number of instructions
in your program� Then, your score �in percent� for the subtask will be calculated according to the respective table for S = 1 or
S = 2:

S = 1:

Condition Score

2000 < K ≤ 105 (158.291 − 7.669 ln K)%

K ≤ 2000 100%

S = 2:

Condition Score

1500 < K ≤ 105 (152.239 − 7.143 ln K)%

K ≤ 1500 100%

In particular, you will get about 70% of the score if K = 105�

Let E be the number of types of expensive instructions used� If E > 0, some percentage of the score in the subtask will be
further deducted according to the following table:

Condition Score Adjustment

E = 1 −25%

E = 2 −35%

E = 3 −45%

Note that the deduction here is based on the number of types of expensive instructions used, not on the number of times they
are used� For example, if append_mult  is called multiple times, only 25% of the points will be deducted; but if append_mult
and append_mod  are both called, 35% of the points will be deducted, even if each function is called only once�

EXAMPLE
Suppose it is guaranteed that S = 1, 0 ≤ A ≤ 1, B = 256 and 100 ≤ X ≤ 101� Then, a possible solution is to construct a
program by making the following calls:

1� append_store(1, 255) , which appends an instruction to store the value 255 in r[1]�
2� append_f(2, 1) , which appends an instruction to execute the function f on r[1] and store the value f(r[1]) in r[2]�

Therefore, r[2] stores f(255)�
3� append_and(0, 0, 2) , which appends an instruction to take the bitwise-AND of r[0] and r[2], then store the result

in r[0]�

If A = 0, f(255) returns 0 and 0 will be stored in register r[0] after the third instruction� If A = 1, f(255) returns 255 and X
will be stored in register r[0] after the third instruction� Therefore, this program is correct�

2023 Team Formation Test

18/19



SAMPLE GRADER
The sample grader reads input from standard input in the following format:

The �rst line consists of a single integer S, the type of the task�
The second line consists of a single integer Q, the number of test cases�
The next Q lines each contains three integers A, B and X, representing a test case�

If the sequence of instructions is incorrect, or it gives an incorrect output for any of the test cases, the sample grader outputs a
line Wrong Answer: Reason � Otherwise, it outputs a line Accepted: %d instructions used �

The outputs to the print(t) and message(msg) instructions will be outputted as well�

If an invalid input is supplied to the sample grader, the behaviour of the grader is unde�ned�

SAMPLE TESTS

Input Output

1 1
2
5 256 8
123 234 123

Test 1: OK 40
Test 2: OK 153
Accepted: 100000 instructions used

2 2
2
5 113 8
123 251 123

Test 1: OK 97
Test 2: OK 211
Accepted: 100000 instructions used

SUBTASKS
For all cases:
1 ≤ S ≤ 2

M = 10000

For S = 1, 0 ≤ A < B ≤ 256

For S = 2, 1 ≤ A < B ≤ 251 and B is a prime number
There exists a unique solution f(X) that is consistent with all other outputs returned by f

Points Constraints

1 14 S = 1

B = 256

2 36 S = 1

3 27 S = 2
B < 128

4 23 S = 2

2023 Team Formation Test

19/19


	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page



