Hong Kong Olympiad in Informatics 2022/23 Heat Event (Junior Group) Official Solution

Statistics (N = 350)

Full mark = 45. Maximum = 42. Median = 14. Advance to Final = 19 marks or above.

${\bf Section}~{\bf A}$

Q	A	Explanation										
		C++ supports Implicit Conversions. For example, if an int variable compares against a float										
1	\mathbf{F}	variable, the int variable will be implicitly converted to a float first, then they are compared as										
		float variables.										
_ 2	F	-12 is a counterexample.										
		A property of bitwise XOR is that the effect of xor-ing a number is canceled by performing the same										
		action again:										
3	Τ	$x \; \mathtt{XOR} \; z = y$										
9	-	$x \; \mathtt{XOR} \; z \; \mathtt{XOR} \; x = y \; \mathtt{XOR} \; x$										
		z=y XOR x										
		Hence, there always exist one (and only one) integer z that satisfies the requirement.										
4	Т	By birthday paradox formula $P(N) = \left(\frac{1}{365}\right)^N \times \frac{365!}{(365-N)!}$, the probability when N = 50 is 97%, which										
		is much higher than 50%.										
	Т	For all odd integers $N > 1$, the statement is true because $N^2 + \left(\frac{N^2 - 1}{2}\right)^2 = \left(\frac{N^2 + 1}{2}\right)^2$.										
5		By doubling the side lengths of these triangles, we get that the statement is true for all even $N > 4$.										
		Lastly, the statement is clearly true when $N=4$.										
		In 5/4, both numbers are in int type, so it performs integer division and the result is also in int										
c	D	type, therefore the first number outputted is 1.										
6		In 5.0/4, 5.0 is in double type, so it performs float division and the result is in double, therefore										
		the second number is 1.25. By the same reasoning, the third number is 1.25										
7	В	c = c + 1 is executed 5 times. i is incremented to 6 at the end of the loop, breaking the loop										
	ט	condition and hence ending the loop.										
		As the initial and final values are the same, there would be exactly 2 '+1' and 2 '-1' operations,										
8	A	resulting $\frac{4\times3}{2}=6$ ways. However, notice that '-1' '-1' '+1' would lead to out of the bound, so										
		there are $6-1=5$ valid ways.										
		When y is 5, $x == y$ returns true, meaning that the ternary operator will return the first expression:										
9	С	x + y, which evaluates to 10.										
		When y is 7, x == y returns false, meaning that the ternary operator will return the second expres-										
		sion: x - y, which evaluates to -2.										
		In C++, one cannot add or multiply an std::string and an integer. The only arithmetic operator										
	D	defined for std::string is operator+ which requires both operands to be of the type std::string,										
10		and there does not exist an implicit conversion from an integer to a std::string (one needs to call										
		std::to_string). Similarly, there does not exist an implicit conversion from an std::string to										
		an integer (one needs to invoke std::stoi) so the normal operators operator+ and operator* of										
		integers are not candidates. Thus, both programs do not compile.										

$\overline{\mathbf{Q}}$	A	Explanation
11	С	Let N be the number of players in each game. The probability of being an imposter in each round is $2/N$. Adding the constraint that Alice is expected to be the imposter in at least one out of seven rounds, we have $2/N \ge 1/7$, which gives $N \le 14$ Notice that the question asked for the "maximum number of friends to invite" instead of the "maximum"
		number of players in the game", we need to deduct Alice from the maximum number of players. Hence, the answer is $14 - 1 = 13$.
		First, notice that the super-swap only acts on elements of the same index parity. It can be viewed as
		swapping to sort the odd elements and even elements independently.
12	В	i. Sort the odd and even elements and put them back in order, the array is $[2, 1, 4, 3, 6, 5, 8, 7]$, which is still not sorted. You may also observe that there is no way to swap element 1 to the front.
		ii. The array can be sorted. The number of swaps required to sort a descending array to ascending is
-		n(n-1)/2. So the answer is $4(4-1)/2 + 5(5-1)/2 = 16$. The break statement only breaks the inner for-loop when $i = j$, the value of cnt can be calculated
13	В	by $0+1+2++9=45$.
		i. Correct. You can compare the given string and the current mid element lexicographically, to
	С	determine whether the string is located in the left half or right half of the array.
14		ii. Correct. As long as you can determine whether the search target exists in the left half or right half
		of the array by comparing it to the mid element, you can binary search. Having multiple elements
		with the same value would not affect this.
		This problem defines the rules of a context-free grammar. All well-formed parentheses matching could
	В	be generated by these actions.
15		i. $S \rightarrow SS \rightarrow (S)(S) \rightarrow ()((S)) \rightarrow ()(())$
		ii. It cannot be generated using the given actions.
		iii. $S \rightarrow (S) \rightarrow (SS) \rightarrow ((S)(S)) \rightarrow (()())$
		We can first consider the first few elements:
		i 0 1 2 3 4 5 6 7 ···
		residue of a[i] when divided by 4 3 0 3 3 2 1 3 0 · · ·
		We can observe that the pattern repeats, cycling through these 6 residues: 3, 0, 3, 3, 2, 1. This
16	A	pattern repeats exactly 5 times in the first 30 elements. However, a[1] is not checked as i starts from
		2, so the answer should be $5-1=4$.
		Note that in C++, taking modulo of negative numbers gives a non-positive value (e.g1 % 4 gives
		-1 instead of 3). However, this does not concern us in this question as we only need a[i] % 4 == 0,
		which holds for both positive and negative multiples of 4.
		i. Correct. David may get rank 1 if he won both his games and Charlie vs Edward is a draw.
	_	ii. Correct. David may get rank 1 if he won both his games and Charlie won against Edward or
17	В	Edward won against Charlie.
		iii. Incorrect. It is impossible for David to get rank 3.
		Both x and y are pushed with the same elements in the same order, but since x is a stack while y is
		a queue, the elements to be compared and popped are the last and the first respectively in the order
18	С	of pushing.
		The loop terminate when either one of x and y is empty, and the final state of x is $\{3,\ 1\}$ in the
		order of pushing, while y is empty.
19	D	Since 2023 different valid inputs do not cover all (valid or invalid) inputs, we cannot determinedly
10		prove any of the 3 statements to be true.

\mathbf{Q}	A	Explanation													
20	В	Since $0 8=8, 1 8=9, 2 8=10,, 7 8=15$, summing up $(0 8, 1 8,, 15 8)$ is equal to summing up 8 to 15 twice, which is $(8+15) \times 8=184$.													
		Track the value of x in each loop:													
01	ъ	cnt 0 1 2 3 4 5 6 7 8 9 10 11 12													
21	D	x 28 24 20 23 22 18 14 10 13 12 8 4 0													
		The return value of f(28) is therefore 12.													
-		Consider a linear ordering of the circle and place Alice at the front, i.e. AXXXXXXXX. This covers all													
		possible configurations as the circle is equivalent under rotation.													
22	В	Now we consider all possible positions of Bob, Bob cannot be on the left / right of Alice, i.e. ABXXXXXX													
		and AXXXXXB. This left us with 5 positions to place Bob at. Filling in the rest arbitrarily with other													
people, we have $5 \times (8-2)! = 3600$ distinct configurations															
		For a fixed i, there are $\lfloor \frac{n}{i} \rfloor$ different j such that the counter increases by 1. Hence, the code calculates													
23	D	the sum of $\lfloor \frac{n}{k} \rfloor$ for $1 \leq k \leq n$. Notice that for large k, the value of $\lfloor \frac{n}{k} \rfloor$ seldomly changes. Therefore,													
		the answer is $50 + 25 + 16 + 12 + 10 + 8 + 7 + 6 + 5 \times 2 + 4 \times 2 + 3 \times 4 + 2 \times 9 + 1 \times 25 = 207$.													
		i. True. The statement "If Charlie plays football with friends or Charlie wins a chess game, Charlie													
		feels happy" is equivalent to "If Charlie does not feel happy, Charlie does not play football with friends													
		and Charlie does not win any chess game". Since there is no typhoon approaching Hong Kong, Charlie													
24	\mathbf{C}	does not feel happy. Hence, he does not win any chess games.													
21	O	ii. True. Since there is no typhoon approaching Hong Kong, Charlie does not feel happy. Hence, he													
		does not play football with friends.													
		iii. False. If Charlie wins a chess game, he must feel happy. Therefore, if he does not feel happy, he													
		must not win any chess games.													
	D	v is nice if there is between 4 and 8 (inclusive) numbers in a being larger than or equal to v. The													
25		numbers in a sorted in descending order are {234, 123, 77, 56, 19, 4, -2, -15, -80, -147}.													
		Therefore, the range for which v is nice is $56 \ge v > -80$.													

Section B

Q	Answer and Explanation											
A1	text[i] == '/' //											
AI	text[i] == 47											
	Locate the slash (/) in text. Alternatively, note that the ASCII code of slash is 47, so it is possible to											
	compare each char in text and 47 with implicit conversion.											
A2	i-1, i+2 //											
A3	i+2, i-1											
	3 and 4 in 2023/24 are located in 1 index behind and 2 indexes in front of the slash (/) respectively.											
	3 and 4's ASCII codes decremented by 1 are the ASCII codes of 2 and 3 respectively.											
	k/2, k-1-i //											
	(k+1)/2, k-1-i //											
В	k-1-i, k-1-i //											
	k-i, k-1-i //											
	k-1,k //											
k,k												
	For the first half of the array, we will need to swap each element with the corresponding element in the											
	second half of the array. Note that the array is 0-based.											

\mathbf{Q}					A	Answ	er an	d Ex	plan	nation	
С	r, r-1, r										
	The reverse subarray function works as follows: $ l = 2 \qquad \qquad r = 6 $										
	0 1 2 3 4 5 6 7										
	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □										
	r-l elements l elements										
	5 4 3 2 1 0 6 7										
	$\downarrow \qquad \qquad$										
						Ť	$\overline{\Box}$				
		2	3	4	5	1	0	6	7		
						\Downarrow				reversePrefix(r);	
				r elei	ments	5		, I		1	
		0	1	5	4	3	2	6	7		
D							~x+1	// ~	·0*x		
	Integers are saved	as 2	's con	nplen	nent.	A wa				integer is, to flip every bit of it, then add 1	
	to it. In C++, bitw	rise ne	egatic	n car	ı be o	done v	with t	the or	erato	or \sim . Therefore the answer is $\sim x+1$.	
	Alternatively, noti	ice th	at the	e bitv	vise n	negatio	on of		-1, sc	you multiply it with x to negate x .	
E	The code calculates the number of triples (i, j, k) with i < j such that the k-th character of i-th										
	string equals to the k-th character of j-th string. We may calculate it directly by enumerating over all										
	pairs of strings.										
	ab ab ab ac ac ac // ab ab ab ab a axy axy //										
F										axy // ab a //	
1								-	-	ab //	
										l abcd	
				_						acters are the same, its contribution to the	
G1	counter is n * (n	- 1)) / 2	. We	may	use t	his ob		tion	to reduce the length of the strings.	
G1	Alice loses no mai	ttor v	what	her fi	ret m	ove i	e On	0 10 ma	v eni	umerate all valid sequences of operations to	
	verify this.	UUCI V	viiau .	iici ii	150 11.	IOVC I	5. OI	ic ilia	y CIIC	micrate air vand sequences of operations to	
G2								3			
	After Alice paints	cell	3 blac	k, Bo	ob ca	n pai	nt eit	her ce	ell 1 d	or cell 5 black. In response, Alice can paint	
	cell 5 or cell 1 bla	ck res	specti	vely,	winn	ing th	ne gan				
H1	A 1: 41	L 1	11 - 4 4	1	: 1 11 -	1-11		5	1 4	Del Alian 41	
	Alice may paint the cell at the middle black. Then, whatever Bob responses, Alice may colour the at the mirror position black, and Alice would win.									rer Bob responses, Ance may colour the cell	
H2	7										
	The argument in H1 can also be applied here.										

Q	Answer and Explanation										
I	x%4!=2&&y%4!=2 // (x%4-2)*(y%4-2)										
	If the cell at (i,j) is a '.', $i \not\equiv 2$ (m	od 4	1) a	nd	$j \not\equiv$	2	(n	nod	4).		
	i\j	0	1	2	3	4	5	6	7	8	
	0	•	•	#	•	•	•	#	•	•	
	1	•	•	#	٠	•	٠	#	٠	•	
	2	#	#	#	#	#	#	#	#	#	
	3	•	•	#	٠	•	٠	#	•	•	
	4		•	#	•	•	•	#	•	٠	
	5		•	#	•	•	•	#	٠	٠	
	6	#	#	#	#	#	#	#	#	#	
	7		•	#	٠	٠	•	#	٠	٠	
	8	•	•	#	•	•	•	#	•	•	
J	x%8&&y%8 // x%8*(y%8) // x&7&&y&7										
	If the cell at (i, j) is a '.', $i \not\equiv 0 \pmod 8$ and $j \not\equiv 0 \pmod 8$.										
	i\j	0	1	2	3	4	5	6	7	8	
	0	#	#	#	#	#	#	#	#	#	
	1	#	•	•	•	•	•	٠	•	#	
	2	#	•	•	•	•	•	•	•	#	
	3	#	•	٠	٠	•	•		•	#	
	4	#	٠	٠	٠	•	٠	·	٠	#	
	5	#	•	٠	•	•	•		٠	#	
	6	#	•	٠	٠	•	•	•	•	#	
	7	#	•	٠	٠	•	•	•	•	#	
	8	#	#	#	#	#	#	#	#	#	
K	(x==4)==(y==	4)	//	(x=	==4)^(y!=	4)	//	! (x==4^y==4)
	If the cell at (i, j) is a '.', either both	n i =	≠ 4	and	$\frac{1}{j}$	$\neq 4$	l, o	r bo	oth	i =	4 and $j=4$.
	$i \setminus j$	0	1	2	3	4	5	6	7	8	
	0					#				•	
	1			•	•	#	•		•	•	
	2		•	•	•	#	•	٠	•	•	
	3	ŀ		٠	٠	#	•		•	•	
	4	#	#	#	#	•	#	#	#	#	
	5		•	٠	•	#	•	٠	•	•	
	6		•	٠	•	#	•	٠	•	٠	
	7		٠	·	٠	#		·	•	٠	
	8		•	•	•	#	•	•	•	•	

Q	Answer and Explanation
	(a-b+3)%3==1 //
	a-b%3==1 //
L	(a+2)%3==b%3 //
	a-1==b%3 //
	(a-b+2)%3==0

Note that 1 beats 3; 2 beats 1; 3 beats 2.

Arranging the numbers in a circle, a number beats the number two positions to its right. A natural way to model this cyclic relationship is modulo arithmetic; A beats B if and only if $A+2 \equiv B \pmod 3$. Rearranging the expression gives the answer (a-b+3)%3==1. For someone from a more mathematically background, it may be unintuitive why the official solution involves a (+3), the necessity of the addition stems from subtleties of the modulo operator in C++; Such reader is encouraged to run the code without the addition to find out why.