Hong Kong Olympiad in Informatics 2022/23
Heat Event (Junior Group)
Official Solution

Statistics ($\mathbf{N}=350$)
Full mark $=45$. Maximum $=42$. Median $=14$. Advance to Final $=19$ marks or above.

Section A

Q	A	Explanation
1	F	C++ supports Implicit Conversions. For example, if an int variable compares against a float variable, the int variable will be implicitly converted to a float first, then they are compared as float variables.
2	F	-12 is a counterexample.
3	T	A property of bitwise XOR is that the effect of xor-ing a number is canceled by performing the same action again: $\begin{aligned} & x \operatorname{XOR} z=y \\ & x \mathrm{XOR} z \mathrm{XOR} x=y \operatorname{XOR} x \\ & z=y \operatorname{XOR} x \end{aligned}$ Hence, there always exist one (and only one) integer z that satisfies the requirement.
4	T	By birthday paradox formula $P(N)=\left(\frac{1}{365}\right)^{N} \times \frac{365!}{(365-N)!}$, the probability when $\mathrm{N}=50$ is 97%, which is much higher than 50%.
5	T	For all odd integers $N>1$, the statement is true because $N^{2}+\left(\frac{N^{2}-1}{2}\right)^{2}=\left(\frac{N^{2}+1}{2}\right)^{2}$. By doubling the side lengths of these triangles, we get that the statement is true for all even $N>4$. Lastly, the statement is clearly true when $N=4$.
6	D	In 5/4, both numbers are in int type, so it performs integer division and the result is also in int type, therefore the first number outputted is 1 . In $5.0 / 4,5.0$ is in double type, so it performs float division and the result is in double, therefore the second number is 1.25 . By the same reasoning, the third number is 1.25
7	B	$c=c+1$ is executed 5 times. i is incremented to 6 at the end of the loop, breaking the loop condition and hence ending the loop.
8	A	As the initial and final values are the same, there would be exactly $2^{\prime}+1^{\prime}$ and $2{ }^{\prime}-1$ ' operations, resulting $\frac{4 \times 3}{2}=6$ ways. However, notice that ' $-1 '^{\prime}-11^{\prime}+11^{\prime}+1$ ' would lead to out of the bound, so there are $6-1=5$ valid ways.
9	C	When y is $5, \mathrm{x}==\mathrm{y}$ returns true, meaning that the ternary operator will return the first expression: $\mathrm{x}+\mathrm{y}$, which evaluates to 10 . When y is $7, \mathrm{x}==\mathrm{y}$ returns false, meaning that the ternary operator will return the second expression: $\mathrm{x}-\mathrm{y}$, which evaluates to -2 .
10	D	In C++, one cannot add or multiply an std: :string and an integer. The only arithmetic operator defined for std::string is operator+ which requires both operands to be of the type std: :string, and there does not exist an implicit conversion from an integer to a std::string (one needs to call std::to_string). Similarly, there does not exist an implicit conversion from an std::string to an integer (one needs to invoke std::stoi) so the normal operators operator+ and operator* of integers are not candidates. Thus, both programs do not compile.

Q	A	Explanation
11	C	Let N be the number of players in each game. The probability of being an imposter in each round is $2 / N$. Adding the constraint that Alice is expected to be the imposter in at least one out of seven rounds, we have $2 / N \geq 1 / 7$, which gives $N \leq 14$ Notice that the question asked for the "maximum number of friends to invite" instead of the "maximum number of players in the game", we need to deduct Alice from the maximum number of players. Hence, the answer is $14-1=13$.
12	B	First, notice that the super-swap only acts on elements of the same index parity. It can be viewed as swapping to sort the odd elements and even elements independently. i. Sort the odd and even elements and put them back in order, the array is $[2,1,4,3,6,5,8,7]$, which is still not sorted. You may also observe that there is no way to swap element 1 to the front. ii. The array can be sorted. The number of swaps required to sort a descending array to ascending is $n(n-1) / 2$. So the answer is $4(4-1) / 2+5(5-1) / 2=16$.
13	B	The break statement only breaks the inner for-loop when $i=j$, the value of cnt can be calculated by $0+1+2+\ldots+9=45$.
14	C	i. Correct. You can compare the given string and the current mid element lexicographically, to determine whether the string is located in the left half or right half of the array. ii. Correct. As long as you can determine whether the search target exists in the left half or right half of the array by comparing it to the mid element, you can binary search. Having multiple elements with the same value would not affect this.
15	B	This problem defines the rules of a context-free grammar. All well-formed parentheses matching could be generated by these actions. $\text { i. } S \rightarrow S S \rightarrow(S)(S) \rightarrow()((S)) \rightarrow()(())$ ii. It cannot be generated using the given actions. $\text { iii. } S \rightarrow(S) \rightarrow(S S) \rightarrow((S)(S)) \rightarrow(()())$
		We can first consider the first few elements:
		$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
		residue of a[i] when divided by $4 \times 1 \begin{array}{lllllllllll} \\ 3 & 0 & 3 & 3 & 2 & 1 & 3 & 0 & \ldots\end{array}$
16	A	We can observe that the pattern repeats, cycling through these 6 residues: $3,0,3,3,2,1$. This pattern repeats exactly 5 times in the first 30 elements. However, a[1] is not checked as i starts from 2 , so the answer should be $5-1=4$.
		Note that in $\mathrm{C}++$, taking modulo of negative numbers gives a non-positive value (e.g. $-1 \% 4$ gives -1 instead of 3). However, this does not concern us in this question as we only need a[i] $\% 4=0$, which holds for both positive and negative multiples of 4 .
17	B	i. Correct. David may get rank 1 if he won both his games and Charlie vs Edward is a draw. ii. Correct. David may get rank 1 if he won both his games and Charlie won against Edward or Edward won against Charlie. iii. Incorrect. It is impossible for David to get rank 3.
18	C	Both x and y are pushed with the same elements in the same order, but since x is a stack while y is a queue, the elements to be compared and popped are the last and the first respectively in the order of pushing. The loop terminate when either one of x and y is empty, and the final state of x is $\{3,1\}$ in the order of pushing, while y is empty.
19	D	Since 2023 different valid inputs do not cover all (valid or invalid) inputs, we cannot determinedly prove any of the 3 statements to be true.

Section B

Q	Answer and Explanation
A1	text $[\mathrm{i}]==1 / \mathrm{l} / /$

For the first half of the array, we will need to swap each element with the corresponding element in the second half of the array. Note that the array is 0 -based.

Q	Answer and Explanation
L	$\begin{gathered} (a-b+3) \% 3==1 / / \\ a-b \% 3==1 / / \\ (a+2) \% 3==b \% 3 / / \\ a-1==b \% 3 / / \\ (a-b+2) \% 3==0 \end{gathered}$
	Note that 1 beats $3 ; 2$ beats 1; 3 beats 2 . Arranging the numbers in a circle, a number beats the number two positions to its right. A natural way to model this cyclic relationship is modulo arithmetic; A beats B if and only if $A+2 \equiv B(\bmod 3)$. Rearranging the expression gives the answer $(a-b+3) \% 3==1$. For someone from a more mathematically background, it may be unintuitive why the official solution involves a $(+3)$, the necessity of the addition stems from subtleties of the modulo operator in C ++ ; Such reader is encouraged to run the code without the addition to find out why.

