Hong Kong Olympiad in Informatics 2021/22
Heat Event (Junior Group)
Official Solution
Statistics ($\mathrm{N}=\mathbf{2 9 0}$)
Full mark $=45$. Maximum $=40$. Median $=11$. Advance to Final $=14.5$ marks or above .

Q	A	Explanation					
1	F	Assume 60% of the doctors are smart people, and the 60% within are rich, then only $60 \% * 60 \%=36 \%$ of the doctors are rich, which is less than 50% while satisfying the conditions. Thus the statement is false.					
2	F	The first program prints "HKOI" for $\mathrm{a}[0] * \mathrm{a}[1] * \mathrm{a}[2] * \mathrm{a}[3]$ times, but the second does $a[0]+a[1]+a[2]+a[3]$ times, which may not be equal. The statement is false.					
3	T	Before any handshake happens, the statement is true. When a handshake happens, the parity in the number of hands shaken for the participants involved flips.					
		Before		After		Is the statement still true?	
		Parity of participant A	Parity of participant B	$\begin{gathered} \text { Parity of } \\ \text { participant A } \end{gathered}$	Parity of participant B		
		Odd	Odd	Even	Even	Yes	
		Odd	Even	Even	Odd	Yes	
		Even	Odd	Odd	Even	Yes	
		Even	Even	Odd	Odd	Yes	
		The statement is always true. When the element to be determined is at the beginning of the array, linear search can operate with 1 comparison, which would be fewer than what binary search needs.					
4	F						
5	F	Calling $A()$ and $B()$ two times may not return the same result, it is possible for $A()>$ $B()$ and $A()<=B()$ and therefore the statement is false.					
6	A	2^{14} is the first power of 2 that is greater than 15000 , therefore at least 2 bytes (16 bits) are required to represent all the citizen ID.					
7	A	x counts the sum of numbers divisible by 10 in range [1, 2022], in which the answer is 202. y counts the sum of numbers divisible by 5 but not 10 in range [1,2022], which is 202 as well. z counts the rest of numbers, which is 2022-202-202=1618					
8	B	d is the smallest integer n such that n (up-down) + down $>=150$. From that, it can be easily calculated that d is minimum for choice B .					
9	A	Option B and C are subsets of option A i.e. if they are true, then option A is also true. Therefore option A are more likely to be true compared to option B and C.					
10	A	```P AND (NOT (Q AND R)) \equiv P AND ((NOT Q) OR (NOT R)) (by De Morgan's Law) Expression i is equivalent.. P AND (NOT (Q AND R)) \equivNOT((NOT P) OR (Q AND R)) (by De Morgan's Law) Expression ii is not equivalent.```					

Q A Explanation

20 C The problem can be converted into "number of ways to tile 1×10 grid with $1 x 1$ and -
1×2 tiles", and can be found using dynamic programming: $f[n]=f[n-1]+f[n$

- 2], with base case $f[0]=1$ and $f[1]=1$.

i	0	1	2	3	4	5	6	7	8	9	10
$\mathrm{f}[\mathrm{i}]$	1	1	2	3	5	8	13	21	34	55	89

In fact, the answer is the $11^{\text {th }}$ Fibonacci number.

21 B Observe that if a grid can be produced, they can both achieve the same sets of grids. Using this, we can check whether 2 grids are in the same set of configuration by achieving grids that are easy to produce, in which we may choose to flip the leftmost and uppermost 4×4 grids into white cells.

For the original grid:

After flipping:

For grid i:

After flipping:

Q A Explanation

For grid ii:

After flipping:

Only grid ii can reach the same configuration as the original grid, the answer is B.
22 A Rephrase the for loops into
for $\mathrm{i}:=0$ to 9 do for $j:=$ i to 7 do for $k:=j$ to 7 do cnt := cnt + 1
The answer is $8+2(7)+3(6)+4(5)+5(4)+6(3)+7(2)+8(1)=120$
23 B Through enumeration we can easily find that $\{1,2,3,4,5,6,8,10,12,15,20,24,30$, $40,60\}$ are products from $1,2,3,4,5$ that are within $[1,100]$. However for $\{4,12,20$, $60\}$, if we input them into the program they will be divided by 2 instead of 4 , causing the output to be 2 .
The answer is therefore 11 .
$24 \mathrm{D} \quad$ Answer $=3($ picking 2$)+10($ picking 3$)+12($ picking 4$)+6($ picking 5$)+1($ picking 6$)$ $=32$
25 B $\quad \mathrm{P}($ Bob winning $)=\mathrm{P}($ Alice lost on third step $) / 3+\mathrm{P}($ Alice lost on second step) / (3*4) $+\mathrm{P}($ Alice lost on first step $) /(3 * 4 * 4)$

$$
\begin{aligned}
& =(3 / 64) / 3+(3 / 16) / 12+(3 / 4) / 48 \\
& =3 / 64
\end{aligned}
$$

Section B

