
Hong Kong Olympiad in Informatics 2021/22

Heat Event (Junior Group)

Official Solution

Statistics (N = 290)

Full mark = 45. Maximum = 40. Median = 11. Advance to Final = 14.5 marks or above.

Section A

Q A Explanation

1 F Assume 60% of the doctors are smart people, and the 60% within are rich, then only

60%*60%=36% of the doctors are rich, which is less than 50% while satisfying the

conditions. Thus the statement is false.

2 F The first program prints “HKOI” for a[0]*a[1]*a[2]*a[3] times, but the second

does a[0]+a[1]+a[2]+a[3] times, which may not be equal. The statement is false.

3 T Before any handshake happens, the statement is true.

When a handshake happens, the parity in the number of hands shaken for the

participants involved flips.

Before After

Is the statement

still true?
Parity of

participant A

Parity of

participant B

Parity of

participant A

Parity of

participant B

Odd Odd Even Even Yes

Odd Even Even Odd Yes

Even Odd Odd Even Yes

Even Even Odd Odd Yes

The statement is always true.

4 F When the element to be determined is at the beginning of the array, linear search can

operate with 1 comparison, which would be fewer than what binary search needs.

5 F Calling A() and B() two times may not return the same result, it is possible for A() >
B() and A() <= B() and therefore the statement is false.

6 A 2
14

 is the first power of 2 that is greater than 15000, therefore at least 2 bytes (16 bits)

are required to represent all the citizen ID.

7 A x counts the sum of numbers divisible by 10 in range [1, 2022], in which the answer is

202.

y counts the sum of numbers divisible by 5 but not 10 in range [1, 2022], which is 202

as well.

z counts the rest of numbers, which is 2022-202-202=1618

8 B

d is the smallest integer n such that n(up-down) + down >= 150. From that, it can

be easily calculated that d is minimum for choice B.

9 A Option B and C are subsets of option A i.e. if they are true, then option A is also true.

Therefore option A are more likely to be true compared to option B and C.

10 A P AND (NOT (Q AND R))
≡ P AND ((NOT Q) OR (NOT R)) (by De Morgan’s Law)

Expression i is equivalent..

 P AND (NOT (Q AND R))
≡ NOT((NOT P) OR (Q AND R)) (by De Morgan’s Law)

Expression ii is not equivalent.

Q A Explanation

11 B For x = 12,
((x / 10 = 2) and (x > 15) or (x mod 3 = 0))

=> ((1 = 2) and (12 > 15) or (0 = 0))
=> (false and false or true)
=> (false or true)
=> true
 ((x / 5 = 2) or (x < 13) and (x mod 5 = 1))
=> ((2 = 2) or (12 < 13) and (2 = 1))
=> (true or true and false)
=> (true || false)
=> true
Therefore the output is YES YES

12 D Assume team 1 won 4 matches, it has to win over every other teams. Thus it is

impossible for team 2 to win over team 1 and the other teams to get another 4 points.

13 C Sequence of operation for the required output: {1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2}

14 A Follow the trace table:

i 1 2 3

a after

operation

{1, 1, 1, 1, 5,
2, 2, 6}

{1, 1, 1, 1, 2,
2, 2, 6}

{1, 1, 1, 1, 2,
2, 2, 6}

The array remains the same for the rest of the operations, thus the answer is 1 2

15 B The number of inversions in the sequence is 5, at least 5 swaps are required.

16 B Follow the trace table.

i 1 2 3 4

x % 4 1 3 3 3

y % 4 0 0 0 0

x afterward 103 107 111 115

y afterward 104 108 112 116

Value of x and y can then be deduced, which is 103+99*4=499 and 100+100*4=500

respectively.

17 D a[3] = 2: false

a[6] mod 2 = 1: true

a[4] = a[7]: false

Thus x = 2 + 4 = 6

18 D All possible ways: 12123, 12132, 12312, 12313, 12323, 13123, 13132, 13213, 13212,

13232

Fill in 1, 2 and 3 with R, B and B, there is 3 ways to do so.

Thus the number of ways is 10*3=30

19 C ii: (a xor b) = 0
≡ (a xor b) xor b = 0 xor b
≡ a = b
iii: when a != b, there must be bit differences between them.

On those bits, their or value would be 1 while their and value is 0, which would return

false on the comparison, equivalent to i.

iv: When b = a + 1, (2a + 1) / 2 = a would be true while a = b is false.

Q A Explanation

20 C The problem can be converted into “number of ways to tile 1x10 grid with 1x1 and -

1x2 tiles”, and can be found using dynamic programming: f[n] = f[n - 1] + f[n
- 2], with base case f[0] = 1 and f[1] = 1.

i 0 1 2 3 4 5 6 7 8 9 10

f[i] 1 1 2 3 5 8 13 21 34 55 89

In fact, the answer is the 11
th

 Fibonacci number.

21 B Observe that if a grid can be produced, they can both achieve the same sets of grids.

Using this, we can check whether 2 grids are in the same set of configuration by

achieving grids that are easy to produce, in which we may choose to flip the leftmost

and uppermost 4x4 grids into white cells.

For the original grid:

After flipping:

For grid i:

After flipping:

Q A Explanation

 For grid ii:

After flipping:

Only grid ii can reach the same configuration as the original grid, the answer is B.

22 A Rephrase the for loops into

for i := 0 to 9 do
 for j := i to 7 do

for k := j to 7 do
 cnt := cnt + 1

The answer is 8 + 2(7) + 3(6) + 4(5) +5(4) + 6(3) + 7(2) + 8(1) = 120

23 B Through enumeration we can easily find that {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30,

40, 60} are products from 1, 2, 3, 4, 5 that are within [1, 100]. However for {4, 12, 20,

60}, if we input them into the program they will be divided by 2 instead of 4, causing

the output to be 2.

The answer is therefore 11.

24 D Answer = 3(picking 2) + 10(picking 3) + 12(picking 4) + 6(picking 5) + 1(picking 6)

 = 32

25 B P(Bob winning) = P(Alice lost on third step) / 3 + P(Alice lost on second step) / (3*4)

+ P(Alice lost on first step) / (3*4*4)

 = (3/64) / 3 + (3/16) / 12 + (3/4) / 48

 = 3/64

Section B

Answer and Explanation

 Pascal C C++

A (a[i]+9)mod 26 (a[i]+9)%26 // a[i]+i%2*26-17 // a[i]%17+i%2*9
If we map A ~ Z to 0 ~ 25, to turn “RIVER” into “ARENA”, we need to go through: 17 → 0, 8

→ 17, 21 → 4, 4 → 13. The new number is always congruent to the original number plus 9

(modulo 26).

B1 i:=n-1 downto 0 do i = n - 1; i >= 0; i--
The coins are sorted in ascending order and we want to use the coins with the larger values first,

so we should loop from n - 1 to 0
B2 m >= c[i]
B3 m - c[i]

We store the remaining money with m, and each time we deduct the coin value from m so that

we can keep track of how much money we still have to pay.

C1/

C2
(3, 4) // (5, 6) // (5, 7) // (5, 8)

When c[1] = 3 and c[2] = 4, Alice’s algorithm uses 4 coins but there exists a construction

using only 3 coins (3 cents * 2 + 4 cents * 2)

When c[1] = 5 and c[2] = 6, Alice’s algorithm uses 5 coins but there exists a construction

using only 2 coins (5 cents * 2).

When c[1] = 5 and c[2] = 7, Alice’s algorithm uses 4 coins but there exists a construction

using only 2 coins (5 cents * 2).

When c[1] = 5 and c[2] = 8, Alice’s algorithm uses 3 coins but there exists a construction

using only 2 coins (5 cents * 2).

D 2, 4
Counter examples where Alice’s greedy algorithm fail in systems 1, 3, and 5:

System 1. m = 24, her algorithm uses 5 coins, optimal solution 3 coins (8 cents * 3).

 System 3. m = 16, her algorithm uses 3 coins, optimal solution 2 coins (8 cents * 2).

 System 5. m = 80, her algorithm uses 10 coins, optimal solution 2 coins (40 cents * 2).

E x*m+y*n-2*x*y
A bulb is related to the button of its row and the button of its column, and will be turned on if

exactly 1 of the 2 buttons are pressed and turned off if neither or both buttons are pressed.

There are m cells in a row and x rows with their buttons pressed, so there are x * m lightbulbs

with the button of its row pressed. Also, x * y cells have both buttons pressed, so there are x * m
- x * y light bulbs with only the button of its row pressed but not the button of its column.

Similarly, there are exactly y * n - x * y light bulbs with only the button of its column pressed

but not the button of its row. So in total, (x * m - x * y) + (y * n - x * y) = x * m + y * n - 2 * x *
y light bulbs are ultimately on.

Answer and Explanation

F1 abs(a[j]-i) // abs(i-a[j])

F2 temp

F3 i

We consider each possible value of x one by one using i. For each i, we compute the sum of

absolute differences and save it in variable temp. If temp is smaller than minsum, which stores

the minimum so far, we update minsum to be equal to temp and x to be equal to i.

G a[200]
Considering a[200 - i] and a[200 + i] for i from 1 to 200, notice that if a[200 - i]
<= x <= a[200 + i], then abs(a[200 - i] - x) + abs(a[200 + i] - x) = x -

a[200 - i] + a[200 + i] - x = a[200 + i] - a[200 - i], otherwise,

abs(a[200 - i] - x) + abs(a[200 + i] - x) > a[200 + i] - a[200 - i],

and considering a[200], we have abs(a[200] - x) >= 0. Thus, the minimum sum is at

least the sum of (a[200 + i] - a[200 - i]) for i from 1 to 200, which is achieved when

x = a[200]. If x is not a[200], then abs(a[200] - x) cannot be 0, so the sum cannot be

minimum.

H 47
The program will output ‘HKOI’ if the xor sum of 10 integers in the array is 118. Note that x
xor x is always identical to 0 and x xor 0 is always identical to x. Thus, a[9] = 118 xor
118 xor a[9] = (a[0] xor a[1] xor … xor a[9]) xor 118 xor a[9] = (a[0]
xor a[1] xor … xor a[8]) xor 118 = 1 xor 2 xor 12 xor 0 xor 58 xor 74

xor 64 xor 92 xor 58 xor 118 = 47.

I 22, end;dec(i); //
24, ;dec(i);end;

53, }i--; //
54, n--;i--; //
55, i--;} //
55, }else //
56, else i++;
56, else{i++};

86, }i--; //
87, n--;i--; //
88, i--;} //
88, }else //
89, else i++;
89, else{i++};

The value of i is sometimes incorrect.

J (ay=by)and((ax1<=bx1)an
d(ax2>=bx1)or(bx1<=ax1)

and(bx2>=ax1)) //
(ay = by) and (ax1 <=
bx2) and (bx1 <= ax2)
// (ay = by) and not

((ax1 > bx2) or (bx1 >
ax2))

ay == by && (ax1 <= bx1 && ax2 >= bx1 || bx1
<= ax1 && bx2 >= ax1) //

ay == by && ax1 <= bx2 && bx1 <= ax2 //
ay == by && !(ax1 > bx2 || bx1 > ax2)

If ay and by are not equal, a and b must be parallel lines with no points of intersection, so ay

must be equal to by. Also, if ax2 < by1 or ay2 < bx1, the lines also have no points of

intersection.

K f(by, ax1, ax2, by, bx1, bx2)
The given code already returns false when ay1 > by or ay2 < by, that is, when the line is above

the rectangle or below the rectangle. Otherwise, considering only the region of rectangle a that

is on the same line as b, it covers the line connecting (ax1, by) and (ax2, by), so we only have

to check that.

