
Hong Kong Olympiad in Informatics 2020/21
Heat Event (Senior Group)
Official Solution

Statistics (N = 184)
Full mark = 45. Maximum = 43. Median = 13. Advance to Finals = 13.5 marks or above.

Section A

Q A Explanation

1 C m mod n (C/C++: m % n) is equivalent to m - (m div n) * n (C/C++: m - (m
/ n) * n) in most programming languages (including Pascal and C/C++).
Thus, we have a = -4, b = -1, c = 2, d = -4 × (-1 + 2) = -4.

2 D Clearly a[0] doesn’t affect the outcome of the code. Since the initial value of answer
(0) is smaller than every element in the array, the output will always be 0.

3 A Note that the values x and y are independent of each other, so we may calculate them
separately. Simulating the first iterations of the loop, we may notice that values of x
follow the pattern 0->3->7->3->7… and the values of y follow the pattern
0->2->5->7->2->5->7->…

4 B By De Morgan’s Law,
NOT (A AND (NOT B OR C)) is equivalent to NOT A OR NOT (NOT B OR
C), which is equivalent to NOT A OR (B AND NOT C).

5 B If Charlie goes, then Bob goes, which in turn implies that Alice will go. Therefore B is the
correct answer.

6 B It is obvious that a[i] stores the i-th Fibonacci number. Note that

and As a signed 32-bit integer can𝐹
𝑛

= 𝐹
𝑛−1

+ 𝐹
𝑛−2

< 2𝐹
𝑛−1

< 2𝑛 𝐹
𝑛

> 2𝐹
𝑛−2

> 2
𝑛
2 .

only store values in , the only possible option would be B.[− 231, 231 − 1]

7 B A directed graph has an Eulerian trail if and only if at most one vertex has (out-degree -
in-degree) = 1, at most one vertex has (in-degree - out-degree) = 1, every other vertex has
equal in-degree and out-degree, and all of its vertices with nonzero degree belong to a
single connected component of the underlying undirected graph.

(i) The graph contains a vertex with in-degree - out-degree = 1 - 3 = -2
(ii) The graph satisfies the conditions described above.
(iii) The graph contains a vertex with in-degree - out-degree = 3 - 1 = 2

8 D We can treat each connected component as a node. In this condensed graph with 3 nodes,
there are 3 ways to add 2 edges such that the graph becomes connected. However, each
added edge corresponds to one of ways to connect two connected components2 · 2 = 4
in the original graph. Therefore, there are ways in total.3 · 4 · 4 = 48

9 A As 31 is 11111 in binary, the function f(n) computes the sum of integers smaller or
equal to n such that its 5 rightmost bits are all ‘1’s.

As 125 is 1111101 in binary, we may deduce that the only possible bits before the 5 ‘1’s
are “00”, “01”, “10”. The desired sum is therefore, 0011111 + 0111111 + 1011111 =
189 in base 10.

10 D Let g[n] be the value of f(n). We can translate the recursive function to g[n] = n +
g[n – 1] + g[n – 2], where g[0] = -1 and g[1] = 2.

g[2] = 2 + g[1] + g[0] = 2 + 2 + (-1) = 3.

11 D g[7] can be found by computing the earlier values one by one.

n g[n]

3 3 + 3 + 2 = 8

4 4 + 8 + 3 = 15

5 5 + 15 + 8 = 28

6 6 + 28 + 15 = 49

7 7 + 49 + 28 = 84

12 B It is obvious that is 1, is (9, 8) or (8, 9), and is greater than all other𝑎
1

(𝑎
5
, 𝑎

9
) 𝑎

4
elements, so it must be 7.
For the 5 remaining numbers {2, 3, 4, 5, 6}, we may split them into 2 unordered
sets of sizes 2 and 3 and assign them to and . The total number of(𝑎

2
, 𝑎

3
) (𝑎

6
, 𝑎

7
, 𝑎

8
)

combinations is therefore .2 · (5𝐶2) = 20

13 B The total number of nodes is maximised when every non-leaf node has exactly two
children. In this case, the tree has nodes. Such a tree can be easily2 × 2020 − 1 = 4039
modified to contain one fewer node while keeping the number of leaf nodes constant.

14 B Let way[i][j] represent the number of ways to reach the cell on the column and𝑖𝑡ℎ 𝑗𝑡ℎ

row. We should initialize way[1][j] to 1 for all j. To compute way[i][j], we add
the number of ways to reach the cells that can directly reach the current cell. The
completed table of values is shown below:

85 75 56 30

10 19 26 30

10 9 7 4

1 2 3 4

The answer is the sum of way[i][4] for all i: 85 + 75 + 56 + 30 = 246.

15 A f(x) returns the number of digits + the number of ‘0’ bits in the binary representation of
x. As 88 is 1011000 in binary, the answer is .7 + 4 = 11

16 C In order to maximize the number of edges while ensuring the bipartite graph is
disconnected, there should be exactly two connected components. (If there are more than
two connected components, we can increase the total number of edges by adding an edge
between any two connected components.) Thus, we only need to consider the four cases
below. To maximize the number of edges in a (bipartite) connected component, we should
divide the vertices into two sets whose sizes are as close as possible.

Number of vertices in
component 1

Number. of vertices in
component 2

Number of edges

1 7 0 + 3 · 4 = 12

2 6 1 · 1 + 3 · 3 = 10

3 5 1 · 2 + 2 · 3 = 8

4 4 2 · 2 + 2 · 2 = 8

Hence, the answer is 12.

17 D Let W be the event such that the first player wins. We may set up the equation P(W) = +5
8

(1 - P(W)). Solving the equation gives P(W) = .3
8 × 8

11

18 B The program is trying to implement a queue. The maximum capacity of the queue is only
10 but we are trying to push 1 to 15 into it. As a result, the final values in q would be {11,
12, 13, 14, 15, 6, 7, 8, 9, 10} and the tail would point to index 5. The desired sum is
therefore11 + 12 + 13 + 14 + 15 = 65.

19 A Since a substring is a contiguous segment of characters, the three vowels must appear
consecutively in the string EXHAUSTION. We consider the three possible cases
separately:

Vowels Constraints of substring Number of substrings

EAU must start at E and can end at U, S or T 1 × 3 = 3

AUI can start at X, H or A and must end at I 3 × 1 = 3

UIO must start at U and can end at O or N 1 × 2 = 2

The total number of substrings is therefore .3 + 3 + 2 = 8

20 B We may solve this problem by dry running the code. Note that a and b are global
variables. Therefore, only the value of a set in the deepest call of f is used.

21 B The program counts the number of ‘1’ bits in the 5 rightmost bits in the binary
representation of 56. As 56 is 110100 in binary, the answer is 2.

22 A Consider the situation where Alice and Bob each flips coins. There are three possible𝑛
outcomes: Bob has more heads, Alice has more heads or they have the same number of
heads. Let be the probability that Bob has more heads. By symmetry, is also the𝑝 𝑝
probability that Alice has more heads. Now we return to the original problem - there are

two ways in which Bob can end up with more heads:
1. Alice and Bob have the same number of heads before Bob’s last flip and Bob flips

a head on his last flip
2. Bob has more heads before his last flip

Hence, the answer is .(1 − 2𝑝) × 1
2 + 𝑝 = 1

2

23 B The program implements the merge part in the merge sort algorithm, but the two
sequences in the inputs provided are not necessarily sorted. The outputs are as follows:
(i) 2 3 1 4 5 7 8 6
(ii) 2 3 4 1 5 6 8 7
(iii) 2 3 1 4 5 7 8 6

24 C If we consider the remaining elements after deletion, we may notice that the problem is
identical to counting the number of non-empty increasing subsequences. This is a standard
dynamic programming problem. Let a be the array and be the number of increasing𝑓(𝑥)
subsequences ending at a[x]. The recurrence relation of is𝑓(𝑥)

. The answer is therefore𝑓(𝑥) = 1 +
𝑦<𝑥, 𝑎[𝑦] < 𝑎[𝑥]

∑ 𝑓(𝑦)

𝑥=1

6

∑ 𝑓(𝑥) = 1 + 2 + 2 + 6 + 6 + 12 = 29.

25 C The top view dictates that there are at least 5 blocks and we can easily construct a valid
configuration with 5 blocks. By considering the columns of the top and front views, the
maximum possible number of blocks is Hence, the answer2 · 2 + 1 · 1 + 2 · 1 = 7.
is .7 − 5 = 2

Section B

Answer and Explanation

Pascal C C++

A D, E, F, G

A and C must be discovered before E and F, so they cannot be the 6th discovered clue.
G requires E and D, which requires B to be discovered, so B also cannot be the 6th clue.
The following 4 examples show possible sequences in which D / E / F / G is the 6th clue:

D: A->C->E->F->B->D->G
E: A->C->B->D->F->E->G
F: A->C->B->D->E->F->G
G: A->C->B->D->E->G->F

B1 x+1 x+1

B2 i*i*i-i i*i*i-i

Notice that .𝑓(𝑥) =
𝑘=1

𝑥

∑ 𝑘(𝑘 + 1)(𝑘 + 2) =
𝑘=0

𝑥+1

∑ 𝑘(𝑘 − 1)(𝑘 + 1) =
𝑘=0

𝑥+1

∑ (𝑘3 − 𝑘)

(Note: for the corresponding term is 0.)𝑘 < 2,

C ((i mod 6=0)or(i mod (i%6==0||i%8==0)&&i%24!=0 //

8=0))and(i mod 24<>0)
// ((i mod 6=0)or(i mod

8=0))and not((i mod
6=0)and(i mod 8=0)) //

(i mod 6=0)and(i
mod8<>0)or(i mod

6<>0)and(i mod 8=0) //
(i mod 6=0)xor(i mod

8=0)

(i%6==0||i%8==0)&&!(i%6==0&&i%8==0))
// i%6==0&&i%8!=0||i%6!=0&&i%8==0 //

i%6==0^i%8==0

An integer is divisible by 6 and 8 if and only if it is divisible by their lowest common multiple
24.

D n div 6+n div 8-n div
24*2

n/6+n/8-n/24*2

n/6+n/8 double counts multiples of 24 so we need to subtract n/24 twice

E1 f f

E2 i=5 i==5

Note that the exact ASCII values are irrelevant as we are only concerned with the differences
between characters. Without loss of generality, assume that ‘a’ is 0 so ‘z’ is 25. Hence, hkoi

corresponds to 7, 10, 14, 8 respectively. The differences between these numbers are 3, 4, -6. Note
that the first two numbers are positive, so the change of sign should occur when i equals 5. Since
i starts from 2, v should be initialized as ‘f’ such that the first printed character is ‘f’ + 2 = ‘h’.

F 17

As 25 is 11001 in binary, f(25) = 11001 xor 1100 xor 110 xor 11 xor 1 = 17.

G 21

Note that the bit at position x from the left is 1 if and only if there is an odd number of ‘1’ bits on
its left (including the bit at position x). The answer is very easy to construct with the above

observation.

H 2143

Claim: For the bit positioned x (index starts at 0) from the right, there are integers between 025

and 63 such that bit x is present after the function f is applied.

Proof:
Consider some integer y between 0 and 63 such that f(y) does not contain bit x, we can show
that it is possible to map y into a unique value z such that f(z) contains bit x.
Case 1: x is odd

It is obvious you may toggle (0->1, 1->0) all bits from position x to 5 to find z
Case 2: x is even

We may toggle the leftmost bit to obtain z.

Therefore, the desired number of integers is .26

2
With the above claim, the answer is easily

.𝑓(64) − 𝑓(0) +
𝑥=0

5

∑ 2𝑥 · 25 = 127 + 63 · 25 = 2143

I 3

From below, we can work out the values of b and c using and . Then, we have𝑓(0), 𝑓(1) 𝑓(− 1)
(mod 3). Thus, at most 3 queries are needed. Note that since returns the𝑎 ≡ 𝑓(1) − 𝑏 − 𝑐 𝑓

remainder of when divided by 3, we won’t gain any extra information by𝑎𝑥2 + 𝑏𝑥 + 𝑐
querying integers that are congruent modulo 3. Now we will show that 2 queries are not

sufficient:

Queries (𝑎, 𝑏, 𝑐) (𝑎, 𝑏, 𝑐) Query results

𝑓(0), 𝑓(1) (0, 1, 0) (1, 0, 0) 0, 1

𝑓(0), 𝑓(2) (0, 2, 0) (1, 0, 0) 0, 1

𝑓(1), 𝑓(2) (0, 1, 1) (1, 1, 0) 2, 0

For each possible pair of queries, there exist two tuples with distinct values of that(𝑎, 𝑏, 𝑐) 𝑎
return the same query result.

J 2

Note that (mod 3). As 2 is self-inverse,𝑓(1) − 𝑓(− 1) ≡ 𝑎 + 𝑏 + 𝑐 − 𝑎 − (− 𝑏) − 𝑐 ≡ 2𝑏
(mod 3). Thus, at most 2 queries are needed. Since𝑏 ≡ 2 · (𝑓(1) − 𝑓(− 1))

returns the remainder of when divided by 3, we won’t gain any extra𝑓 𝑎𝑥2 + 𝑏𝑥 + 𝑐
information by querying integers that are congruent modulo 3. Now we will show that 1 query is

not sufficient:

Query (𝑎, 𝑏, 𝑐) (𝑎, 𝑏, 𝑐) Query result

𝑓(0) (0, 1, 0) (1, 0, 0) 0

𝑓(1) (0, 1, 0) (1, 0, 0) 1

𝑓(2) (0, 2, 0) (1, 0, 0) 1

For each possible query, there exist two tuples with distinct values of that return the(𝑎, 𝑏, 𝑐) 𝑎
same query result.

K 1

returns the value of𝑓(0) 𝑐

L1 c[i-1] c[i-1] // j

L2 c[i]-1 c[i]-1

L3 b[j]:=i b[j]=i

c[i] represents the number of input integers that are smaller than or equal to i, so the number
of occurrences of i is c[i] – c[i – 1]. Looping from c[i – 1] to c[i] - 1 is

exactly c[i] – c[i – 1] times. Since the program outputs the elements of b, we need to
store our sorted numbers into b.

Note that this is actually an implementation of the counting sort algorithm.

M1 (s[1] or s[2])and not
s[3]

(s[1]||s[2])&&!s[3] //
s[1]&&s[3]==0||s[2]&&s[3]==0

M2 (s[3] or s[4])and not
s[5]

(s[3]||s[4])&&!s[5] //
s[3]&&s[5]==0||s[4]&&s[5]==0

M3 (s[5] or s[6])and not
s[7]

(s[5]||s[6])&&!s[7] //
s[5]&&s[7]==0||s[6]&&s[7]==0

For the robot to go RIGHT, s[3] should be empty, otherwise the robot will be blocked.
Also the robot is to follow the boundary, so at least one of s[1] and s[2] should be true.

When s[1] is true, the robot “goes straight”;
when s[2] is true and s[1] is false, the robot “turns around a corner”.

Similarly for DOWN and LEFT.
Note that in the given board setting, no two of M1, M2, M3 can be true at the same time.

In other words, there are no width-1 “corridors” or “dead ends”.

