Hong Kong Olympiad in Informatics 2020/21 Heat Event (Junior Group) Official Solution

Statistics (N = 233)

Full mark = 45. Maximum = 40.5. Median = 18. Advance to Finals = 20.5 marks or above.

Section A1								
Q	A	Explanation						
1	F		A string is a sequence of characters. HKOI21 and HKOIXXI contain 6 and 7 characters, so it requires $8 \cdot 6 = 48$ and $8 \cdot 7 = 56$ bits to store them respectively.					
2	Т		To determine whether a number is odd or even, we only need to consider the least significant bit, i.e. the right-most bit.					
		x	У	Z	х & у	z y	(x & y) ^ (z y)	
		0	0	0	0	0	0	
		0	1	1	0	1	1	
		1	0	1	0	1	1	
		1	1	0	1	1	0	
		By considering all possible cases, we can see that the function returns an odd number if and only if x and y do not have the same parity.						
3	Т	For each digit in the base 8 representation of n , we may rewrite it as a 3 digit number in base 2. For example, 7 in base 8 is 111 in base 2. We can observe that for each base 8 digit (0 - 7), its digit sum in base 2 is always no larger than that in base 8. Therefore, we may conclude that the digit sum in base 2 is no larger than base 8.						
4	F	By Pythagoras' Theorem, the side lengths of a right-angled triangle satisfy $a^2 + b^2 = c^2$. If <i>a</i> , <i>b</i> , <i>c</i> are positive odd integers, the left-hand side of the equation is an even number but the right-hand side is an odd number. Hence, there is a contradiction.						
5	F	domino opposite	on the boa	rd must cove re of the same	r one black and e color, the num	one white ce	regular 8×8 chessboard. A ll. As the two diagonally and white cells is not equal n such dominoes.	

Section A2

Q	Α	Explanation
6	А	The binary representation of 8 is 1000, which has 1 '1-bit'.
7	D	Since -1 is negative and the number is represented in two's complement, the sign bit (which represents -2^{31}) is set to 1. The remaining bits must sum to $2^{31} - 1$ so all 31 of them are set to 1. Thus, every bit of the signed 32-bit integer is 1.
8	С	By dry running the code, we find that x takes the values 16, 8, 4, 2, 1. Since a is initialized as x, the answer is $16 + 16 + 8 + 4 + 2 + 1 = 47$.
9	В	As there are only two iterations in the for loop, we may dry run the program in very little time.
10	С	C is the contrapositive of the given conditional statement, so it must be true. Note: In first order logic, "If A then B" is equivalent to "If NOT B then NOT A". The statement "If NOT B then NOT A" is called the contrapositive of "If A then B"
11	D	Let <i>n</i> be the initial number of bottle caps she has. By trading a new bottle of juice, the value of <i>n</i> decreases by 1. Therefore, we may set up the equation $2n - 1 = 83$ and solving the equation gives $n = 42$ as the solution.
12	А	a [i] stores the exponent of 2 in the prime factorization of <i>i</i> . As $2020 = 2^2 \times 5 \times 101$, the answer is 2.
13	C	Note that you cannot apply the square operation for more than 2 times. Consider the following 4 cases.
		Case 1: Apply +1 operation until it reaches 100.
		Case 2: Apply +1 operation until it reaches a number between 4 and 10. After squaring a number between 4 and 10, you may no longer perform another squaring operation. Therefore, the case contributes 7 ways to the answer.
		Case 3: Apply +1 until it reaches 2. After squaring, x becomes 4, you may either square it again, increment it until it reaches a number between 5 and 10, or increment it until 100. These 3 scenarios contribute 1, 6 and 1 ways respectively.
		Case 4: Apply +1 until it reaches 3. This case is similar to case 3, you may either square it again, increment it until 10, or increment it until 100. These 3 scenarios contribute 1, 1, and 1 way respectively.
		Therefore, the answer = $1 + 7 + (1 + 6 + 1) + (1 + 1 + 1) = 19$.
14	D	For (i), we consider each bit separately: if a has a 1 bit, then a or b is 1, so a will not decrease. Similarly, for (ii), if a has a 0 bit, then a and b is 0, so a will not increase. For (iii), a xor $b = a$ if and only $b = 0$. As it is given that b is a positive integer, the statement must be true.

15	С	The inner loop replaces element a [i] with the maximum element in a [i+1n]. In fact, this is an incomplete selection sort algorithm that orders the first 4 greatest elements of a $[19]$ in descending order. Note that the number at index 0 is not considered. The final values of a $[14]$ would be $\{10, 9, 8, 6\}$ intuitively.					
16	D			e true. In partier the stack ope			nted by a singly
17	D	O represents an occupied seat, while X represents an unoccupied seat. We may count all combinations by considering the following 3 cases. Case 1: (the Os in between each X are the same) XOOXOOXOO OOXOOXOOX Case 2: (some Xs are seating together) OOXXOOXOO OOXOOXOOO Case 3: (neither Case 1 nor Case 2) OXOXOOXOO OXOOXOOO OXOOXOOO OXOOXOOO OXOOXO					
18	В	For an even-length string, the answer is obviously $\frac{n}{2}$ which rules out option A and D. For an odd-length string, note that the middle character does not need to be compared with. Therefore, the answer is $\frac{n-1}{2}$, which is equivalent to option B.					
19	С	Two boolean expressions are equivalent if they have the same truth table. The truth tables are as follows:					
		(A OR B) A	AND (NOT A	OR NOT B)	(A AND B)	XOR (A OI	RB)
			B = False	B = True		B = False	B = True
		A = False	False	True	A = False	False	True
		A = True	True	False	A = True	True	False
		(A XOR B)	OR (A ANI	ЭВ)	(A OR B)	AND (A XO	RB)
			B=False	B=True		B = False	B = True
		A = False	False	True	A = False	False	True
	A = True True True A = True True					True	False
20	В	By dry running the code, res will be 22 finally.					
21	С	The function $f(x)$ counts the number of factors of x. As $2520 = 2^3 \cdot 3^2 \cdot 5 \cdot 7$, the answer would be $(3 + 1)(2 + 1)(1 + 1)(1 + 1) = 48$.					

22	С	loops, the	The code is an implementation of the Floyd cycle detection algorithm. After both while loops, the value of x would be equal to the starting point of the cycle, that is 6. The program outputs a [6] which points to 8.					
		You may	also dry run t	he code to find the answer.				
23	В	multiple o For (ii), w die twice,	For (i), for k flips of a fair coin, there are a total of 2^k combinations, which is not a multiple of 3. For (ii), we can split the outcome of the die into 3 sets: {1, 2}, {3, 4}, {5, 6}. By rolling the die twice, there are $3 \cdot 3 = 9$ distinct and equally likely combinations which can be used to generate an integer between 1 and 9.					
24	В	We may exhaust Silloh's. Note that no boys can stand before Silloh, therefore the required probability = $1/7 \times (1 + 3/6 + 3/6 \times 2/5 + 3/6 \times 2/5 \times 1/4) = 1/4$						
25	D	a[i] *	a[i] * a[(i+2)%5] is added to ca[i] times if and only if a[i] is positive.					
		Option	Input	с	Output			
		Α	72-356	$7 \cdot 7 \cdot (-3) + 2 \cdot 2 \cdot 5 + 5 \cdot 5 \cdot 7 + 6 \cdot 6 \cdot 6$	120			
		В	-16032	$6 \cdot 6 \cdot 3 + 3 \cdot 3 \cdot (-1) + 2 \cdot 2 \cdot 6$	123			
		С	-1 3 7 8 2	$3 \cdot 3 \cdot 8 + 7 \cdot 7 \cdot 2 + 8 \cdot 8 \cdot (-1) + 2 \cdot 2 \cdot 2$	118			
		D	2 -1 5 -5 6	$2 \cdot 2 \cdot 5 + 5 \cdot 5 \cdot 6 + 6 \cdot 6 \cdot (-1)$	134			
		Hence, D	gives the larg	gest output.				

Section B

	Answer and Explanation						
	Pascal			С		C++	
A1			tr	ue			
A2			tr	ue			
A3			fal	se			
	Add every digit and check whether the sum is divisible by 3.						
В	667						
	g(x) returns true when x is a multiple of 3. Hence, the answer = $1000 - floor(1000/3) = 667$.						
C			1	5		3	
	5		1	2		2	

					•			
		3		0	2		1	
		1		0 1			0	
	Considering the first row, it is obvious that you must fill in 2 '2's and 1 '1'. As the first colur requires a sum of 1, a '2' cannot be filled in. Filling in the remaining blanks is then straightforward.							
D				316	335		354	
		316		102	102		112	
		354		112	121		121	
		335		102	112		121	
	hu	n split this problem in ndreds digit is trivial. em. The subproblem	The tern of ones of are	s digits are a ligit can be s equivalent to	a permutation of f solved by trial an p + 3, 2+3, 3+3:	the n	umbers in the previo	ous
				3+3	2+3		1+3	
		3+3		1+1	1+1		1+1	
		1+3		1+1	0+1		0+1	
		2+3	1+1		1+1		0+1	
	Actua	We may obtain the lly, the problem is de		uch that the				dering
E	b+	2 // a+5 // a [,]	*2		b+2 //	a+5	// a*2	
	Chai	racter n is at index 6,		-	ould be executed ent b by 2 every t		•	itive
F		6210001000		6210001000		6210001000		
	Here is one way of getting to the answer: we try putting 9 at the first digit (900000000), then the last digit should become a 1 (900000001). Now, a 1 should be put in the second digit (910000001). Since there are 2 ones, we change the second digit to a 2 (920000001) and subsequently the third digit to a 1 (9210000001). Note that there are six 0s so we update the first digit to a 6 (6210000001). Finally, observe that by changing the position of the last 1, we arrive at a valid number 6210001000.						git and he first	
G		125346			25346		125346	
	The gi	ven code is a faulty b	oubble so	ort algorithm to dry run		to o	btain the answer wo	ould be
Н		BABABA		BZ	ABABA	BABABA		

		Observe that the faulty algorithm only works when there are no consecutive As, therefore, the input BABABA would give the desired order after sorting.				
Ι		4				
	given function does not check \sqrt{x} . H	it is sufficient to check for divisors up to \sqrt{x} . However, the ence, the function returns a wrong answer when <i>x</i> has exactly from 1 and itself, i.e. when $x = 2^2, 3^2, 5^2, 7^2$.				
J1	20	48				
J2	<pre>while(i*i<=x)do // while(i<x)do pre="" while(i*i<x+1)do<=""></x)do></pre>	<pre>while(i*i<=x) // while(i<x) <="" th=""></x)></pre>				
	By changing < i	into <=, the function now checks \sqrt{x} too.				
K	<pre>(j-i<=1) and (i-j<=1) //</pre>	j-i<2&&i-j<2 // abs(i-j)<2 // (j-i)*(j-i)<=1 // j==i j==i-1 j==i+1				
	Note that the #s consist of 3 diagonal lines which can be described as $j-i = -1$, $j-i = 0$ and $j-i = 1$.					
L	(i+j)div 3=3	(i+j)/3==3 // (i+j)%12>8 // (i+j+1)%10<3				
	Similarly, note that the #s consist of 3 diagonal lines which can be described as $i+j = 9$, $i+j = 10$ and $i+j = 11$.					
М	$[[\mathcal{V}] 4 [\mathcal{V}] 4] 4$. The path of	There are more than 1000+ solutions to this problem. One of the most intuitive solutions is $[[\forall n] 4 [\forall n] 4] 4$. The path of the bishop should resemble a zig-zag pattern. Note that a command is voided if it moves the bishop out of the chessboard.				
	Examples of other solutions: $[?]$	$[^{1}]5[^{1}]6]8, [^{1}]5[^{1}]6]7, [[^{1}]4[^{1}]4]4$				