Hong Kong Olympiad in Informatics 2020/21
Heat Event (Junior Group)
Official Solution

Statistics ($\mathbf{N}=\mathbf{2 3 3}$)

Full mark $=45$. Maximum $=40.5$. Median $=18$. Advance to Finals $=20.5$ marks or above .
Section A1

Section A2

Q	A	Explanation
6	A	The binary representation of 8 is 1000 , which has 1 ' 1 -bit'.
7	D	Since -1 is negative and the number is represented in two's complement, the sign bit (which represents -2^{31}) is set to 1 . The remaining bits must sum to $2^{31}-1$ so all 31 of them are set to 1 . Thus, every bit of the signed 32 -bit integer is 1 .
8	C	By dry running the code, we find that x takes the values $16,8,4,2,1$. Since a is initialized as x, the answer is $16+16+8+4+2+1=47$.
9	B	As there are only two iterations in the for loop, we may dry run the program in very little time.
10	C	C is the contrapositive of the given conditional statement, so it must be true. Note: In first order logic, "If A then B" is equivalent to "If NOT B then NOT A". The statement "If NOT B then NOT A" is called the contrapositive of "If A then B"
11	D	Let n be the initial number of bottle caps she has. By trading a new bottle of juice, the value of n decreases by 1 . Therefore, we may set up the equation $2 n-1=83$ and solving the equation gives $n=42$ as the solution.
12	A	a [i] stores the exponent of 2 in the prime factorization of i. As $2020=2^{2} \times 5 \times 101$, the answer is 2.
13	C	Note that you cannot apply the square operation for more than 2 times. Consider the following 4 cases. Case 1: Apply +1 operation until it reaches 100 . Case 2: Apply +1 operation until it reaches a number between 4 and 10 . After squaring a number between 4 and 10, you may no longer perform another squaring operation. Therefore, the case contributes 7 ways to the answer. Case 3: Apply +1 until it reaches 2. After squaring, x becomes 4, you may either square it again, increment it until it reaches a number between 5 and 10, or increment it until 100. These 3 scenarios contribute 1, 6 and 1 ways respectively. Case 4: Apply +1 until it reaches 3. This case is similar to case 3 , you may either square it again, increment it until 10, or increment it until 100 . These 3 scenarios contribute 1 , 1 , and 1 way respectively. Therefore, the answer $=1+7+(1+6+1)+(1+1+1)=19$.
14	D	For (i), we consider each bit separately: if a has a 1 bit, then a or b is 1 , so a will not decrease. Similarly, for (ii), if a has a 0 bit, then a and b is 0 , so a will not increase. For (iii), a xor $\mathrm{b}=\mathrm{a}$ if and only $\mathrm{b}=0$. As it is given that b is a positive integer, the statement must be true.

15	C	The inner loop replaces element a [i] with the maximum element in a [i+1...n]. In fact, this is an incomplete selection sort algorithm that orders the first 4 greatest elements of a [1...9] in descending order. Note that the number at index 0 is not considered. The final values of $a[1 \ldots 4]$ would be $\{10,9,8,6\}$ intuitively.					
16	D	All of the given statements are true. In particular, a stack can be implemented by a singly linked list whose head is where the stack operations happen.					
17	D	O represents an occupied seat, while X represents an unoccupied seat. We may count all combinations by considering the following 3 cases. Case 1: (the Os in between each X are the same) XOOXOOXOO OOXOOXOOX Case 2: (some Xs are seating together) OOXXOOXOO OOXOOXXOO Case 3: (neither Case 1 nor Case 2) OXOXOOXOO OXOOXOXOO OXOOXOOXO OOXOXOXOO OOXOXOOXO OOXOOXOXO Answer: 10					
18	B	For an even-length string, the answer is obviously $\frac{n}{2}$ which rules out option A and D. For an odd-length string, note that the middle character does not need to be compared with. Therefore, the answer is $\frac{n-1}{2}$, which is equivalent to option B.					
19	C	Two boolean expressions are equivalent if they have the same truth table. The truth tables are as follows:					
		(A OR B) AND (NOT A OR NOT B)			(A AND B) XOR (A OR B)		
			$\mathrm{B}=$ False	$\mathrm{B}=$ True		$\mathrm{B}=$ False	$\mathrm{B}=$ True
		A = False	False	True	A = False	False	True
		$\mathrm{A}=$ True	True	False	$\mathrm{A}=$ True	True	False
		(A XOR B) OR (A AND B)			(A OR B) AND (A XOR B)		
			B $=$ False	$\mathrm{B}=$ True		$\mathrm{B}=$ False	$\mathrm{B}=$ True
		A = False	False	True	A = False	False	True
		A = True	True	True	A = True	True	False
20	B	By dry running the code, res will be 22 finally.					
21	C	The function $f(x)$ counts the number of factors of x. As $2520=2^{3} \cdot 3^{2} \cdot 5 \cdot 7$, the answer would be $(3+1)(2+1)(1+1)(1+1)=48$.					

22	C	The code is an implementation of the Floyd cycle detection algorithm. After both while loops, the value of x would be equal to the starting point of the cycle, that is 6 . The program outputs a [6] which points to 8 . You may also dry run the code to find the answer.			
23	B	For (i), for k flips of a fair coin, there are a total of 2^{k} combinations, which is not a multiple of 3 . For (ii), we can split the outcome of the die into 3 sets: $\{1,2\},\{3,4\},\{5,6\}$. By rolling the die twice, there are $3 \cdot 3=9$ distinct and equally likely combinations which can be used to generate an integer between 1 and 9 .			
24	B	We may exhaust Silloh's. Note that no boys can stand before Silloh, therefore the required probability $=1 / 7 \times(1+3 / 6+3 / 6 \times 2 / 5+3 / 6 \times 2 / 5 \times 1 / 4)=1 / 4$			
25	D	a [i] * a [$i+2) \% 5]$ is added to c a [i] times if and only if a [i] is positive.			
		Option	Input	c	Output
		A	72-356	$7 \cdot 7 \cdot(-3)+2 \cdot 2 \cdot 5+5 \cdot 5 \cdot 7+6 \cdot 6$	120
		B	-16032	$6 \cdot 6 \cdot 3+3 \cdot 3 \cdot(-1)+2 \cdot 2 \cdot 6$	123
		C	-13782	$3 \cdot 3 \cdot 8+7 \cdot 7 \cdot 2+8 \cdot 8 \cdot(-1)+2 \cdot 2$	118
		D	2-15-56	$2 \cdot 2 \cdot 5+5 \cdot 5 \cdot 6+6 \cdot 6 \cdot(-1)$	134
		Hence, D gives the largest output.			

Section B

Answer and Explanation				
	Pascal	C		C+
A1	true			
A2	true			
A3	false			
	Add every digit and check whether the sum is divisible by 3 .			
B	667			
	$g(x)$ returns true when x is a multiple of 3 . Hence, the answer$=1000-\text { floor }(1000 / 3)=667 .$			
C		1	5	3
	5	1	2	2

	Observe that the faulty algorithm only works when there are no consecutive As, therefore, the input BABABA would give the desired order after sorting.	
I	4	
	To determine whether x is prime, it is sufficient to check for divisors up to \sqrt{x}. However, the given function does not check \sqrt{x}. Hence, the function returns a wrong answer when x has exactly one divisor, \sqrt{x}, apart from 1 and itself, i.e. when $x=2^{2}, 3^{2}, 5^{2}, 7^{2}$.	
J1	20	48
J2	while(i*i<=x)do // while(i<x)do // while(i*i<x+1)do	while(i*i<=x) // while(i<x) // while(i*i<x+1) // while(i<=floor(sqrt(x)))
	By changing $<$ into $<=$, the function now checks \sqrt{x} too.	
K	$\begin{gathered} (j-i<=1) \text { and }(i-j<=1) / / \\ \text { abs }(i-j)<2 / / / \\ (j-i) *(j-i)<=1 / / \\ (j=i) \text { or }(j=i-1) \text { or }(j=i+1 \end{gathered}$	$\begin{gathered} j-i<2 \& \& i-j<2 \quad / / \text { abs }(i-j)<2 \quad / / \\ (j-i)^{*}(j-i)<=1 / / j==i\| \| j==i-1\| \| j==i+1 \end{gathered}$
	Note that the \#s consist of 3 diagonal lines which can be described as $j-i=-1, j-i=0$ and $j-i=1$.	
L	$(i+j)$ div $3=3$	$\begin{gathered} (i+j) / 3==3 / /(i+j) \% 12>8 / / \\ (i+j+1) \% 10<3 \end{gathered}$
	Similarly, note that the \#s consist of 3 diagonal lines which can be described as $i+j=9$, $i+j$ $=10$ and $i+j=11$.	
M	There are more than $1000+$ solutions to this problem. One of the most intuitive solutions is $[[\searrow \not] 4[\mathbb{L} \mathbb{C}] 4]$. The path of the bishop should resemble a zig-zag pattern. Note that a command is voided if it moves the bishop out of the chessboard. 	

