Hong Kong Olympiad in Informatics 2019/20 Heat Event (Senior Group) Official Solution

Statistics (N = 203)

Full mark = 42. Maximum = 40. Median = 12.5. Advance to Final = 13.5 marks or above.

Secti	ion A	
Q	Α	Explanation
1	D	Consider a sequence with '-' and '/' to represent the modification of n in the while
		loop : (e.g. : $50 = \frac{1}{-1/1}$). Note that '-' operations must come along with '/' operations
		and the last operation must be '/'. So, there should be $4C3 + 5C2 = 14$ combinations
		with $(4'/' 3'-')$ and $(5'/' 2'-')$. But as $56(('//-//-/''))$ and
		52("///-/-") are out of range, so the final answer is $14 - 2 = 12$.
2	В	Trace the program carefully.
		fact(10, 4) = 10 * fact(6, 3) = 10 * 6 * fact(3, 2) = 10 * 6 * 3 * fact(1, 1) = 10 * 6 * 3 *
		1 * fact(0, 0) = 10 * 6 * 3 * 1 * 1 = 180
3	С	Quick sort works by selecting a 'pivot' element from the array and partitioning the other
		elements into two sub-arrays, according to whether they are less than or greater than
		the pivot. The sub-arrays are then sorted recursively.
		Insertion sort iterates, consuming one input element each repetition, and growing a
		sorted output list. At each iteration, insertion sort removes one element from the input
		data, finds the location it belongs within the sorted list, and inserts it there. It repeats
		until no input elements remain.
		Merge sort first divides the unsorted list into n sublists, each containing one element (a
		list of one element is considered sorted). Then repeatedly merge sublists to produce new
		sorted sublists until there is only one sublist remaining. This will be the sorted list.
		So only quick sort and merge sort apply divide and conquer.
4	С	Both function f and g would return a value when $n = 0$ and stop recurring, because of
		short-circuit evaluation -
		• when first argument of the AND function evaluates to false, the overall value must be
		false.
		• and when the first argument of the OR function evaluates to true, the overall value
		must be true.
		f(0) = true, g(0) = false, and for n > 0, f(n) = g(n - 1), and g(n) = f(n - 1)
		- 1).
		$f(72) = g(71) = f(70) = \dots = g(1) = f(0) = true$
		$g(107) = f(106) = g(105) = \dots = g(1) = f(0) = true$

C Consider the cases when Tom stands at the leftmost end of the line, as boys and girls must stand alternatively, the arrangement is as follows (T = Tom, G = Girl, B = Boy): TGBGBGBGBGBGBG, which is 5! * 6! = 86400.
When Tom stands at the rightmost end of the line, the arrangements are the reversed version of Tom standing at the leftmost end of the line. And thus, the answer is 86400*2 = 172800.

6	D '	Trace	the	program	carefully:
---	-----	-------	-----	---------	------------

i	q[0]	q[1]	q[2]	q[3]
push(1)	1	0	0	0
push(4)	1	4	0	0
push(3)	1	4	3	0
push(2)	1	4	3	2

ii	q[0]	q[1]	q[2]	q[3]
push(4)	4	0	0	0
push(3)	3	4	0	0
push(2)	2	4	3	0
push(1)	1	4	3	2

iii	q[0]	q[1]	q[2]	q[3]
push(4)	4	0	0	0
push(2)	2	4	0	0
push(3)	2	4	3	0
push(1)	1	4	3	2

Since the values of q are the same for all i, ii and iii after push, the output will also be the same. The output is 1234 for options i, ii and iii.

	(A OR B) OR (A)	KOR B)
	A = false	A = true
B = false	false	true
B = true	true	true
	(A OR B) XOR (A	XOR B)
	A = false	A = true
B = false	false	false
B = true	false	true
	(A OR B) OR (A A	AND B)
	A = false	A = true
B = false	false	true
B = true	true	true
	(A OR B) XOR (A	NOR B)
	A = false	A = true
B = false	true	true
B = true	true	true

7 D Consider the truth tables below

8	D	A pair of Boolean expression is logically equivalent if they have the same truth table.						
		The truth tables are as follow	s:					
		((NOT ;	a) AND b) OR (a AND (M	NOT b))				
			a = false	a = true				
		b = false	false	true				
		b = true	true	false				
			NOT (a = b)					
			a = false $a = true$					
		b = false	false true					
		b = true	true false					
		Ν	OT ((NOT a) = (NOT b))				
			a = false	a = true				
		b = false	false	true				
		b = true	true	false				
		From the truth tables, all thre	e Boolean expressions are log	gically equivalent.				
9	В	Bun can always set the count	er to a multiple of 8 after his	round(regardless of Apple's				
		choice). After reaching 992(n	nultiple of 8), the counter mu	st lie within 993-999 after				
10	•	Apple's round. Consequently	Bun can win the game.					
10	А	1. Bun can only use the strate	gy above if and only if the initial conjugation of the strategy above if	tial value of the counter is a				
		inutiple of 8, otherwise Appl	le can use the strategy above	illistead.				
		ii. Each time Apple used 0, B	un can use 0 in the next round	l to keep the counter to a				
		indicipie of of	multiple of o.					
		iii. Using the strategy above, for each number x in 1 to 7, the count of number x used by						
		Apple must be the same as the count of number (8-x) used by Bun after each of Bun's						
		rounds, so buil can always ke	ep the counter to a multiple o	1 8.				
		So, the answer is i only.						
11	D	The program outputs the num	ber of 1s in the binary notation	on of x. Since $79622_{10} =$				
	-	10011011100000110 ₂ , the	answer is 8.					
12	В	The program performs bubble	e sort on the odd index eleme	nts and even index elements				
		of array a respectively. So on	ny n and m must be true.					

D i. 65535 mod 3 = 0. Note that the range starts from 0, so the number of values % 3 that return 0 is 65535/3+1 = 21846. While that of 1 and 2 are 21845. The chance of returning 0 is higher than that of 1 and 2.

ii. $(r()+r()+r()) \mod 3 = (r() \mod 3 + r() \mod 3 + r() \mod 3) \mod 3$. From (i), we know that the probability function of r() mod 3 is not equally distributed. In fact, the probabilities of getting 0, 1, 2 are as follows, P(0) = 21846 / 65535, P(1) = 21845 / 65535, P(2) = 21845 / 65535

For $(r() \mod 3 + r() \mod 3 + r() \mod 3) \mod 3$, the probabilities of getting 0, 1, 2 can be obtained by using the results above.

- P'(0) = P(0)P(0)P(0) + P(0)P(1)P(2) + P(0)P(2)P(1) + P(1)P(0)P(2) + P(1)P(1)P(1) + P(1)P(2)P(0) + P(2)P(0)P(1) + P(2)P(1)P(0) + P(2)P(2)P(2)
- P'(1) = P(0)P(0)P(1) + P(0)P(1)P(0) + P(0)P(2)P(2) + P(1)P(0)P(0) + P(1)P(1)P(2) + P(1)P(2)P(1) + P(2)P(0)P(2) + P(2)P(1)P(1) + P(2)P(2)P(0)
- P'(2) = P(0)P(0)P(2) + P(0)P(2)P(0) + P(0)P(1)P(1) + P(1)P(0)P(1) + P(1)P(0)P(1)P(0) + P(1)P(2)P(2) + P(2)P(0)P(0) + P(2)P(1)P(2) + P(2)P(2)P(1)

Suppose P(0) = a, P(1) = P(2) = b,

$$P'(0) = a^3 + 6ab^2 + 2b^3$$
, $P'(1) = P'(2) = 3a^2b + 3ab^2 + 3b^3$,

P'(0) > P'(1) = P'(2)

So, the chance of returning 0 is higher than that of 1 and 2.

Alternatively, considering r() that return an integer between 0 and 4 inclusively with equal probability would provide insights for finding that the chance of returning 0 is higher.

14 D The possible range of (myrand(50) - 30) is [-30,19]. But after (mod 5), the range will become [-4,4], So the answer is 9.

15 B Values of i, x, y after the ith iteration:												
		i	0	1	2	3	4	5	6	7	8	9
		x	0	4	4	2	2	3	3	1	1	5
		у	0	0	1	1	0	0	3	3	1	1

16 C The push function pushes an element into the queue. The pop function outputs the first element in the queue and pops it. The queue size is 3. After the first 3 push, tail = head so the first pop outputs "Empty". Queue is a First-In-First-Out data structure, so the remaining outputs are "4", "8", "Empty".

	1	2	3	4	5	6	7	8
1	1(A)	1	1	1	1	1	1	1
2	1	2	3	4	1	2	3	4
3	1	3	6	10	1	3	6	10
4	1	4	10	20	20	3	9	19
5	1	1	1	20	40	40	40	59
6	1	2	3	3	40	80	120	179
7	1	3	6	9	40	120	240	419
8	1	4	10	19	59	179	419	838(B)

17 A Calculate the number of different paths for every cell.

There are 838 different paths.

18 A When a[i]≠0, x=a[i], so a[j] mod x must be 0 when j=i. This sets flag to true and increases res. By tracing the program, it can be found that these values are not set to 0: a[0] = 2, which sets 6(a[2]), 18(a[5]) and 50(a[9]) to 0 a[1] = 5, which sets 15(a[4]), 35(a[7]), and 45(a[8]) to 0 a[3] = 9 a[6] = 21 Alternatively, one may observe that the program outputs the number of elements in a that is not a multiple of any element before it. Only 2,5,9,21 meet this criterion, so res = 4.

19 B The possible scores of each round:

20

Round	Score
0	0:0
1	1:0 or 0:1
2	2:0 or 0:2
3	2:1 or 1:2 or 3:0 or 0:3
4	3:1 or 1:3
5	3:2 or 2:3
6	3:3

For round 1 and round 3, the probability of getting the score listed on the table from the previous round is 1. For the remaining rounds, the probability is 1 / 2. So, the final answer is $(1 / 2)^4 = 1 / 16$.

D	The expected time require for each strategy:						
	Expected Time						
	Strategy A	10*0.1 + 20*0.2 + 35*0.2 + 75*0.5 = 49.5					
	Strategy B	40*0.5 + 55*0.2 + 65*0.2 + 75*0.1 = 51.5					
	Strategy C	10*0.1 + 50*0.5 + 65*0.2 + 75*0.2 = 54					
	Strategy D	10*0.2 + 25*0.2 + 65*0.5 + 75*0.1 = 47					

As strategy D has the minimum expected time among all strategies, it is the answer.

21 C Note that the leftmost 3 vertices are interconnected, so their colours have to be different. Hence, there are 3! = 6 ways to fill in the left part.

Denote the central vertex as colour 1. The rightmost 3 vertices (from up to down) can be 2 1 2, 2 1 3, 2 3 2, 3 1 2, 3 1 3 and 3 2 3. Hence, there are 6 ways to fill in the right part.

22	С	The program outputs the number of 1s in the binary notation of i. Since $153_{10} =$
		10011001 ₂ , the answer is 4.

23 A Trace the program carefully:

	Each value in array b			
i = 0	3123456789			
i = 1	3123456789			
i = 2	3143456789			
i = 3	3141456789			
i = 4	3141456789			
i = 5	3141476789			
i = 6	3141471789			
i = 7	3141471889			
i = 8	3141471819			
i = 9	3141471811			

As f(x) will return x when b[x] = x or return f(b[x]) in other cases, f(b[4]) = 4, f(b[8]) = f(b[1]) = 1,

So the answer is 4 1.

A f(n) is the Euler's phi function. The only positive integers < pq that are not coprime with pq are kp for k = 1, 2, ..., p - 1, and kq for k = 1, 2, ..., q - 1, altogether p + q - 2 numbers. The list is exhaustive because the integers required should have common divisors (besides 1) with pq, which that common divisor can only be either p or q since p and q are distinct primes. Also, no integer exists in both lists because the smallest integer that is multiples of p and q is pq.

There are a total of pq - 1 positive integers smaller than pq, subtract the number of integers on the list above to get the number of coprime required.

f(pq) = (pq - 1) - (p + q - 2) = pq - p - q + 1 = (p - 1)(q - 1)

B The program finds the prime numbers between 2 and 10. If i is a prime number, a[i] =
0. Otherwise, a[i] = 1. The array p stores the prime numbers. There are 4 prime numbers between 2 and 10 so k = 4. Note that 4 is not a prime number so a[k] = 1.

Section B

	Answer and Explanation								
	Pascal	С	C++						
Α	(s[n]='0')and((n=1)or(s	s[n-1]=='0'&&(n=	=1 s[n-2]=='0')						
	[n-1]='0'))								
	Please be noted that 0 is also a multiple of 100. So, checking if the integer is 0 or the last two								
	digits of the integer are both 0 would be correct.								
В	b[i]:=b[i]+b[i-1]	b[i]=b[i]+b[i-1]	b[i]=b[i]+b[i-1]						
	Observe that $b[1] = a[1], b[2] = a[2] - a[1], b[3] = a[3] - a[2]$								
	So adding b[i-1] to each b[i] from $i = 1$ to $i = 8$ will tur	n every b[i] to be a[i] again.						
С	b[9-i]:=b[9-i]-b[8-i]	b[9-i]=b[9-i]-b[8-i]	b[9-i]=b[9-i]-b[8-i]						
	As b[i] stores the value from a[1] to a[i], b[i] - b[i-1] would be a[i].								
	But starting the process from b[1] would not work as b[i-1] in b[i] - b[i-1] has been								
		modified for other i.							
	Reversing the order of the process by starting from b[8] could prevent the problem.								
D1		This question is cancelled.							
D2									
D3									
Е									
F	3	3	3						
	f(x) returns the number of factor	ors x. The factors of 121 are 1,11	1 and 121, there are a total of 3						
		factors.							
G	25	25	25						
	The program outputs the nu	mber of integers between 1 and	10000 having 3 factors. The						
	integers having 3 factors must l	be square of prime numbers, so t	he program outputs the number						
	of prime	numbers between 1 and 100, wh	ich is 25.						
H1	n+1	n+1	n+1						
H2	f(n-1) xor n	f(n-1)^n	f(n-1)^n						
	By tra	cing g(n), the following is obse	erved:						
		when $n \mod 4 = 0$, $g(n) = n$							
		when $n \mod 4 = 1$, $g(n) = 1$							
		when $n \mod 4 = 2$, $g(n) = n+1$							
		when $n \mod 4 = 3$, $g(n) = 0$							
	For H1, when r	$n \mod 4 = 2$, returning $n+1$ will b	e same as g(n).						
	For H2, for other cases, as $g(n) = g(n-1)^n$, we can just simply return $f(n-1)^n$ as the base								
	case is defined.								

I1	((a<=b)and(b<=c))or((c<	((a<=b&&b<=c) (c<=b&&b	((a<=b&&b<=c) (c<=b&&b				
	=b)and(b<=a))	<=a))	<=a))				
I2	<pre>median(b,c,a) //</pre>	<pre>median(b,c,a) //</pre>	<pre>median(b,c,a) //</pre>				
	<pre>median(c,a,b)</pre>	<pre>median(c,a,b)</pre>	<pre>median(c,a,b)</pre>				
	For I1, we just need to check whether b is in the middle of the three numbers.						
	We know that the function can return the median if the second parameter is the median.						
	For I2, what we need to do is to check a or c is the median. So, we can shuffle the numbers and						
	call the function itself to check which one is the median. Remember to ensure that both a and c						
	can be the second parameter in the future calls.						
J	f(a-m)+f(b-m)+f(c-m)	f(a-m)+f(b-m)+f(c-m)	f(a-m)+f(b-m)+f(c-m)				
	f(x) returns the absolute value	of x. f(x-m) calculates the diff	erence between x and m. One of				
	f(a-m), $f(b-m)$, $f(c-m)$ is equal to 0 and the other two's sum will be equal to the range.						
Κ	-480	-480	-480				
	The error of the program is t	hat it would treat the "+" sign as	a digit precedent to the next				
	number.						
		number.					
	Given that you didn't memo	number. rize the ASCII code of "+", the o	ligit that it represents can be				
	Given that you didn't memo figured out from the given exan	number. rize the ASCII code of "+", the oppose x is to the the transformation of transformation of the transformation of the transformation of transformation of the transformation of the transformation of	digit that it represents can be he value "+" represents, solving				
	Given that you didn't memo figured out from the given exan 100	number. rize the ASCII code of "+", the of ple $100 + 1 = 51$. Suppose x is t 0 + 10x + 1 = 51, we will get x =	digit that it represents can be he value "+" represents, solving -5.				
	Given that you didn't memory figured out from the given exan 100 The given expression	number. rize the ASCII code of "+", the of ple $100 + 1 = 51$. Suppose x is t 0 + 10x + 1 = 51, we will get x = 10 + 10 would evaluate to be 10	digit that it represents can be he value "+" represents, solving -5. + -5 * 100 + 10 = -480				
L1	Given that you didn't memor figured out from the given exam 100 The given expression 26	number. rize the ASCII code of "+", the of the ple $100 + 1 = 51$. Suppose x is the 10 + 10x + 1 = 51, we will get x = 10 + 10 would evaluate to be 10 56	digit that it represents can be he value "+" represents, solving -5. + -5 * 100 + 10 = -480 85				
L1 L2	Given that you didn't memory figured out from the given exam 100 The given expression 26 inc(i) end; //continue	number. rize the ASCII code of "+", the of the ple $100 + 1 = 51$. Suppose x is t 0 + 10x + 1 = 51, we will get x = 10 + 10 would evaluate to be 10 56 i++; } // continue; }	digit that it represents can be he value "+" represents, solving -5. + -5 * 100 + 10 = -480 85 i++; } // continue; }				
L1 L2	Given that you didn't memor figured out from the given exam 100 The given expression 26 inc(i) end; //continue end;	number. rize the ASCII code of "+", the of the apple $100 + 1 = 51$. Suppose x is the 0 + 10x + 1 = 51, we will get x = 10 + 10 would evaluate to be 10 56 i++; } // continue; }	digit that it represents can be he value "+" represents, solving -5. + -5 * 100 + 10 = -480 85 i++; } // continue; }				
L1 L2	Given that you didn't memor figured out from the given exam 100 The given expression 26 inc(i) end; //continue end; To fix the bug of the program	number. rize the ASCII code of "+", the of the ple $100 + 1 = 51$. Suppose x is the 0 + 10x + 1 = 51, we will get x = 10 + 10 would evaluate to be 10 56 i++; } // continue; } h, the program would simply nee	digit that it represents can be he value "+" represents, solving -5. + -5 * 100 + 10 = -480 85 i++; } // continue; } d to go onto the next iteration				
L1 L2	Given that you didn't memory figured out from the given exam 100 The given expression 1 26 inc(i) end; //continue end; To fix the bug of the program whenever a "+" sign is met. T	number. rize the ASCII code of "+", the of the pipe $100 + 1 = 51$. Suppose x is the 0 + 10x + 1 = 51, we will get $x = 10 + 10$ would evaluate to be 10 56 i++; } // continue; } a, the program would simply neer this can be done by increasing the	digit that it represents can be he value "+" represents, solving -5. + -5 * 100 + 10 = -480 85 i++; } // continue; } d to go onto the next iteration e pointer (which is i) by 1, or				