
Hong Kong Olympiad in Informatics 2019/20

Heat Event (Junior Group)

Official Solution

Statistics (N = 266)

Full mark = 42. Maximum = 41. Median = 11. Advance to Final = 15.5 marks or above.

Section A

Q A Explanation

1 F Binary search can only be applied to a sorted array.

2 F Although most computers have a single CPU, some motherboards had multiple CPU

sockets to increase processing power when multi-core CPU was less popular.

3 F The author dedicates his work to the public domain by waiving all his rights to the

work under copyright law, so no attribution is needed.

4 T 214748364710 = 01111111 11111111 11111111 111111112. After adding 10, it

becomes 10000000 00000000 00000000 000010012 (-214748363910), an overflow

error occurred. However, by subtracting 10 from it, the number would become

214748364710 again, which is the correct result of the expression and can be stored in a

32-bit signed integer.

5 T The sign of the result of a Mod operator is always the same as the sign of the left side

operand. In fact, m mod n (C/C++: m % n) is equivalent to m - (m div n) * n (C/C++:

m - (m / n) * n) in most programming languages (including Pascal and C/C++). Thus,

the expression always evaluates to true.

6 B sum stores the sum of all even numbers between 1 and 100.

2+4+6+...+100 = (2 + 100) * 50 / 2 = 2550

sum2 stores the sum of squares of all numbers (not even numbers) between 1 and 100.

The sum of squares of first n natural numbers is n(n+1)(2n+1)/6

12+22+32+...+1002 = 100 * 101 * 201 / 6 = 338350

7 D The program calculates the frequency of digits 0-9, multiplied by the digit itself,

appearing in array a, and stores them in b[0]-b[9] respectively.

Then it outputs b[3] (2*3=6), b[5] (0*5=0) and b[7] (2*7=14).

8 D The program finds the prime numbers between 2 and 100. a[1] is initialized with 1 and

97 is a prime number. So, both a[1] and a[97] are equal to 1.

9 C

Second number #possible third number #possible first number

2 4 (3 4 5 6) 1 (1)

3 3 (4 5 6) 2 (1 2)

4 2 (5 6) 3 (1 2 3)

5 1 (6) 4 (1 2 3 4)

6 0 5 (1 2 3 4 5)

possible cases = 4 * 1 + 3 * 2 + 2 * 3 + 1 * 4 + 0 * 5 = 20

total cases = 6 * 6 * 6 = 216

Answer = 20 / 216 = 5 / 54

10 C Consider the cases when Tom stands at the leftmost end of the line, as boys and girls must

stand alternatively, the arrangement is as follows (T = Tom, G = Girl, B = Boy):

TGBGBGBGBGBG, which is 5! * 6! = 86400.

When Tom stands at the rightmost end of the line, the arrangements are the reversed

version of Tom standing at the leftmost end of the line. And thus, the answer is 86400*2 =

172800.

11 D Trace the program carefully:

Since the values of q are the same for all i, ii and iii after push, the output will also be the

same. The output is 1234 for options i, ii and iii.

i q[0] q[1] q[2] q[3]

push(1) 1 0 0 0

push(4) 1 4 0 0

push(3) 1 4 3 0

push(2) 1 4 3 2

ii q[0] q[1] q[2] q[3]

push(4) 4 0 0 0

push(3) 3 4 0 0

push(2) 2 4 3 0

push(1) 1 4 3 2

iii q[0] q[1] q[2] q[3]

push(4) 4 0 0 0

push(2) 2 4 0 0

push(3) 2 4 3 0

push(1) 1 4 3 2

12 D Consider the truth tables below:

(A OR B) OR (A XOR B)

A = false A = true

B = false false true

B = true true true

(A OR B) XOR (A XOR B)

A = false A = true

B = false false false

B = true false true

(A OR B) OR (A AND B)

A = false A = true

B = false false true

B = true true true

(A OR B) XOR (A NOR B)

A = false A = true

B = false true true

B = true true true

A ⊗ B is equivalent to (A OR B) XOR (A NOR B).

13 D A pair of Boolean expression is logically equivalent if they have the same truth table.

The truth tables are as follows:

((NOT a) AND b) OR (a AND (NOT b))

a = false a = true

b = false false true

b = true true false

NOT (a = b)

a = false a = true

b = false false true

b = true true false

NOT ((NOT a) = (NOT b))

a = false a = true

b = false false true

b = true true false

From the truth tables, all three Boolean expressions are logically equivalent.

14 B Bun can always set the counter to a multiple of 8 after his round(regardless of Apple’s

choice). After reaching 992(multiple of 8), the counter must lie within 993-999 after

Apple’s round. Consequently, Bun can win the game.

15 A i. Bun can only use the strategy above if and only if the initial value of the counter is a

multiple of 8, otherwise Apple can use the strategy above instead.

ii. Each time Apple used 0, Bun can use 0 in the next round to keep the counter to a

multiple of 8.

iii. Using the strategy above, for each number x in 1 to 7, the count of number x used by

Apple must be the same as the count of number (8-x) used by Bun after each of Bun’s

rounds, so Bun can always keep the counter to a multiple of 8.

So, the answer is i only.

16 D The program outputs the number of 1s in the binary notation of x. Since 7962210 =

100110111000001102, the answer is 8.

17 B The program performs bubble sort on the odd index elements and even index elements

of array a respectively. So only ii and iii must be true.

18 D i. 65535 mod 3 = 0. Note that the range starts from 0, so the number of values % 3 that

return 0 is 65535/3+1 = 21846. While that of 1 and 2 are 21845. The chance of

returning 0 is higher than that of 1 and 2.

ii. (r()+r()+r()) mod 3 = (r() mod 3 + r() mod 3 + r() mod 3) mod 3.

From (i), we know that the probability function of r() mod 3 is not equally distributed.

In fact, the probabilities of getting 0, 1, 2 are as follows,

P(0) = 21846 / 65535, P(1) = 21845 / 65535, P(2) = 21845 / 65535

For (r() mod 3 + r() mod 3 + r() mod 3) mod 3, the probabilities of getting 0, 1, 2 can

be obtained by using the results above.

• P’(0) = P(0)P(0)P(0) + P(0)P(1)P(2) + P(0)P(2)P(1) + P(1)P(0)P(2) +

P(1)P(1)P(1) + P(1)P(2)P(0) + P(2)P(0)P(1) + P(2)P(1)P(0) + P(2)P(2)P(2)

• P’(1) = P(0)P(0)P(1) + P(0)P(1)P(0) + P(0)P(2)P(2) + P(1)P(0)P(0) +

P(1)P(1)P(2) + P(1)P(2)P(1) +P(2)P(0)P(2) + P(2)P(1)P(1) + P(2)P(2)P(0)

• P’(2) = P(0)P(0)P(2) + P(0)P(2)P(0) + P(0)P(1)P(1) + P(1)P(0)P(1)+

P(1)P(1)P(0) + P(1)P(2)P(2) + P(2)P(0)P(0) + P(2)P(1)P(2) + P(2)P(2)P(1)

Suppose P(0) = a, P(1) = P(2) = b,

P’(0) = a3 + 6ab2 + 2b3, P’(1) = P’(2) = 3a2b + 3ab2 + 3b3,

P’(0) > P’(1) = P’(2)

So, the chance of returning 0 is higher than that of 1 and 2.

Alternatively, considering r() that return an integer between 0 and 4 inclusively with

equal probability would provide insights for finding that the chance of returning 0 is

higher.

19 D The possible range of (myrand(50) - 30) is [-30,19]. But after (mod 5), the range will

become [-4,4], So the answer is 9.

20 B Values of i, x, y after the ith iteration:

i 0 1 2 3 4 5 6 7 8 9

x 0 4 4 2 2 3 3 1 1 5

y 0 0 1 1 0 0 3 3 1 1

21 C The push function pushes an element into the queue. The pop function outputs the first

element in the queue and pops it. The queue size is 3. After the first 3 push, tail = head

so the first pop outputs “Empty”. Queue is a First-In-First-Out data structure, so the

remaining outputs are “4”, “8”, “Empty”.

22 C Calculate the number of different paths for every cell.

 1 2 3 4 5 6 7 8

1 1(A) 1 1 1 1 1 1 1

2 1 2 2 2 2 2 2 1

3 1 2 4 4 4 4 2 1

4 1 2 4 8 8 4 2 1

5 1 2 4 8 16 20 2 1

6 1 2 4 4 20 40 42 1

7 1 2 2 2 2 42 84 85

8 1 1 1 1 1 1 85 170(B)

There are 170 different paths.

23 A When a[i]≠0, x=a[i], so a[j] mod x must be 0 when j=i. This sets flag to true and

increases res. By tracing the program, it can be found that these values are not set to 0:

a[0] = 2, which sets 6(a[2]), 18(a[5]) and 50(a[9]) to 0

a[1] = 5, which sets 15(a[4]), 35(a[7]), and 45(a[8]) to 0

a[3] = 9

a[6] = 21

Alternatively, one may observe that the program outputs the number of elements in a

that is not a multiple of any element before it. Only 2,5,9,21 meet this criterion, so

res = 4.

24 B The possible scores of each round:

Round Score

0 0:0

1 1:0 or 0:1

2 2:0 or 0:2

3 2:1 or 1:2 or 3:0 or 0:3

4 3:1 or 1:3

5 3:2 or 2:3

6 3:3

For round 1 and round 3, the probability of getting the score listed on the table from the

previous round is 1. For the remaining rounds, the probability is 1 / 2. So, the final

answer is (1 / 2)4 = 1 / 16.

25 D The expected time require for each strategy:

Expected Time

Strategy A 10*0.1 + 20*0.2 + 35*0.2 + 75*0.5 = 49.5

Strategy B 40*0.5 + 55*0.2 + 65*0.2 + 75*0.1 = 51.5

Strategy C 10*0.1 + 50*0.5 + 65*0.2 + 75*0.2 = 54

Strategy D 10*0.2 + 25*0.2 + 65*0.5 + 75*0.1 = 47

As strategy D has the minimum expected time among all strategies, it is the answer.

Section B

Answer and Explanation

 Pascal C C++

A (s[n]='0')and((n=1)or(s

[n-1]='0'))

s[n-1]=='0'&&(n==1||s[n-2]=='0')

Please be noted that 0 is also a multiple of 100. So, checking if the integer is 0 or the last two

digits of the integer are both 0 would be correct.

B b[i]:=b[i]+b[i-1] b[i]=b[i]+b[i-1] b[i]=b[i]+b[i-1]

Observe that b[1] = a[1], b[2] = a[2] - a[1], b[3] = a[3] - a[2]...

So adding b[i-1] to each b[i] from i = 1 to i = 8 will turn every b[i] to be a[i] again.

C b[9-i]:=b[9-i]-b[8-i] b[9-i]=b[9-i]-b[8-i] b[9-i]=b[9-i]-b[8-i]

As b[i] stores the value from a[1] to a[i], b[i] - b[i-1] would be a[i].

But starting the process from b[1] would not work as b[i-1] in b[i] - b[i-1] has been

modified for other i.

Reversing the order of the process by starting from b[8] could prevent the problem.

D1 This question is cancelled.

D2

D3

E

F 4 4 4

f(x) returns the number of factors x. The factors of 10 are 1, 2, 5 and 10, there are a total of 4

factors.

G 3 3 3

The factors of 121 are 1,11 and 121, there are a total of 3 factors.

H 25 25 25

The program outputs the number of integers between 1 and 10000 having 3 factors. The

integers having 3 factors must be square of prime numbers, so the program outputs the number

of prime numbers between 1 and 100, which is 25.

I 11 11 11

The xor(Pascal)/^(C, C++) function carries out element-wise xor operation on the binary

representations of the two numbers. (e.g. 11002 xor 01012=10012)

By tracing the program, the result is 10112, which is 1110

J1 start+1 start+1 start+1

J2 acc xor i acc^i acc^i

By tracing g(n), the following is observed:

when n mod 4 = 0, g(n) = n

when n mod 4 = 1, g(n) = 1

when n mod 4 = 2, g(n) = n+1

when n mod 4 = 3, g(n) = 0

The main idea of f(n) is to reduce the number of operations using the observation above. J2

should be (acc xor i) as start+1 to n are the remaining parts of the calculation.

In f(n), start equals the largest number smaller than or equal to n that mod 4 = 2. From the

observation above, in order to match the answer, acc here should have the value start+1, which

can also correctly calculate the answers for other cases (when i = start+1, acc xor i = (start+1)

xor (start+1) = 0, etc.).

K f(a-m)+f(b-m)+f(c-m) f(a-m)+f(b-m)+f(c-m) f(a-m)+f(b-m)+f(c-m)

f(x) returns the absolute value of x. f(x-m) calculates the difference between x and m. One of

f(a-m), f(b-m), f(c-m) is equal to 0 and the other two’s sum will be equal to the range.

L -480 -480 -480

The error of the program is that it would treat the “+” sign as a digit precedent to the next

number.

Given that you didn’t memorize the ASCII code of “+”, the digit that it represents can be

figured out from the given example 100 + 1 = 51. Suppose x is the value “+” represents, solving

100 + 10x + 1 = 51, we will get x = -5.

The given expression 10 + 10 would evaluate to be 10 + -5 * 100 + 10 = -480

M1 26 56 85

M2 inc(i) end; //continue

end;

i++; } // continue; } i++; } // continue; }

To fix the bug of the program, the program would simply need to go onto the next iteration

whenever a “+” sign is met. This can be done by increasing the pointer (which is i) by 1, or

using continue to break out of the current iteration and continue with the next.

