
2019 Team Formation Test

Task Overview

ID Name Time Limit Memory Limit Subtasks

T191 Distributing Cards 3.000 s 512 MB 11 + 17 + 19 + 24 + 29

T192 Colorful Strip 2.000 s 512 MB 10 + 25 + 30 + 28 + 7

T193 Liquid Layers 1.000 s 256 MB 100 (Partial score available)

T194 Roulette 1.000 s 256 MB 8 + 9 + 12 + 34 + 37

Notice:
Unless otherwise speci�ed, inputs and outputs shall follow the format below:

One space between a number and another number or character in the same line.
No space between characters in the same line.
Each string shall be placed in its own separate line.
Outputs will be automatically �xed as follows: Trailing spaces in each line will be removed and an end-of-line character
will be added to the end of the output if not present. All other format errors will not be �xed.

C++ programmers should be aware that using C++ streams (cin / cout) may lead to I/O bottlenecks and substantially lower
performance.

For some problems 64-bit integers may be required. In Pascal it is int64 . In C/C++ it is long long and its token for scanf
/ printf is %lld .

All tasks are divided into subtasks. You need to pass all test cases in a subtask to get points.

 Hong Kong Olympiad in Informatics 2019 Team Formation Test

1/14

Time Limit: 3.000 s / Memory Limit: 512 MBT191 - DISTRIBUTING CARDS
Recently, a Trading Card Game (TCG) called Shadowverse blew up the whole Byteland! Both Alice and Bob are addicted to
this card game. Today, they are going to buy the newly released Shadowverse deck. Due to the budget constraint, they decide to
chip in for a single deck instead of buying one deck for themselves on their own.

After getting the new deck, their next task is to discuss how to distribute the cards in the deck. Alice and Bob then come up
with a method to distribute the cards fairly. Initially, they put all N cards in the deck and arrange them in a ring. More
precisely, they put down the 1st card at �rst, then put the 2nd card to the right of the 1st card, then the 3rd card, 4th card, and
so on. Finally, they put down the N th card so that the 1st card is to its right.

Alice then lets Bob take any card (and any number of cards) he wants one by one. However, she also sets a cost ci on each card
such that, after Bob takes the xth card, Alice will take the next cx cards to the right of the xth card. If there will be less than cx
cards after Bob takes the xth card, Bob is not permitted to take it.

Bob is now thinking about what strategy can be used for obtaining all the cards he likes. Each card belongs to one of the two
types: Follower or Spell. Bob likes Follower cards only and he would like to obtain all Follower cards. In contrast, he hates Spell
card so much and he refuses to take any Spell card.

Bob �nds that di�erent orders of taking cards may a�ect whether he can obtain all the Follower cards. Therefore, Bob is now
curious about how many di�erent card-taking orders there are, such that he can take all the Follower cards according to the
order. Note that Bob will never take any Spell card.

INPUT
The �rst line contains an integer N , the number of cards in the deck.
The second line contains a string with N characters. Each character is either F or S . If the ith character is F , it means that
the ith card is a Follower card; otherwise, the ith card is a Spell card.
The third line contains N integers ci, denoting the cost of the ith card.

OUTPUT
Output a single integer in one line, which is the number of di�erent card-taking orders such that Bob can obtain all the
Follower cards. As the number may be large, print it modulo 109 + 7.

 Hong Kong Olympiad in Informatics 2019 Team Formation Test

2/14

SAMPLE TESTS

Input Output

1 6

FSSSFS

2 0 0 0 2 0

1

There is only one valid card-taking order: take the 1st card and give the 2nd and 3rd cards to Alice; then, take the 5th

card and give the 6th and 4th cards to Alice.

2 4

FFFS

1 0 0 0

2

The two valid ways are 2nd → 3rd → 1st and 3rd → 2nd → 1st.

3 4

FFFF

1 0 0 0

0

4 5

FSSSF

4 0 0 0 1

0

SUBTASKS
For all cases:
1 ≤ N ≤ 106
0 ≤ ci ≤ N
ci = 0 if the ith card is a Spell card.
It is guaranteed that there will be at least one Follower card.

Points Constraints

1 11 1 ≤ N ≤ 10

2 17 Number of Follower cards ≤ 10

3 19 0 ≤ ci ≤ 1
For any card i, ci = 0 if the card in its left is a Follower card.

4 24 1 ≤ N ≤ 1000

5 29 No additional constraints

 Hong Kong Olympiad in Informatics 2019 Team Formation Test

3/14

Time Limit: 2.000 s / Memory Limit: 512 MBT192 - COLORFUL STRIP
Mr Tung Cow received an electronic strip as his graduation gift! The cool thing about this strip is that it is divided into N cells.
Initially, each cell is either red (R), green (G) or blue (B).

"Wow! What an amazing strip!", Mr Tung Cow thought. But the coolest thing is yet to come: the colour in each cell could be
changed! There are two ways to change the cells' colours. The �rst way is to change a continuous segment of cells to a speci�c
colour. The second way is to shift the colours of a continuous segment of cells.

Formally, for the �rst way, Mr Tung Cow can choose two integers x, y and a color C, where 1 ≤ x ≤ y ≤ N and C is either R
, G , or B . Then, the colours of all cells from x to y will be changed to C.

For the second way, Mr Tung Cow can choose two integers x, y where 1 ≤ x ≤ y ≤ N . For x ≤ i ≤ y, if cell i is red (R), it
will become green (G); if cell i is green (G), it will become blue (B); if cell i is blue (B), it will become red (R). In other
words, shifting is the simultaneous applications of the three color-change rules to all cells from x to y: R -> G , G -> B , B -> R .

Also, Mr Tung Cow loves colourful things. And as a mathematician (mathematicow?), he loves de�ning things. He de�nes a
colourful strip as a continuous sequence of cells containing all three colours (R , G and B). For example, the strip " RGGRB " has
three colorful strips:
RGGRB (1, 5)
GGRB (2, 5)
GRB (3, 5)

Now there are Q events happening in chronological order.

For the ith event, it can only be one of the three types below:

Type 1: Mr Tung Cow changes the colours of the xthi to the ythi cells to Ci (�rst way of changing colour mentioned
above).
Type 2: Mr Tung Cow shifts the colours of the xthi to the ythi cells (second way of changing colour mentioned above).
Type 3: Mr Tung Cow gives you two integers xi, yi, asking you how many colourful strips (p, q) exists such that
xi ≤ p ≤ q ≤ yi.

As he is Mr Tung Cow, you have to answer him. Please output the answers to all the type 3 events in chronological order.

INPUT
The �rst line contains an integer N , which is the length of the strip.
The second line contains a length-N string. Each character is either R , G , or B . The ith character represents the initial color
of the ith cell of the strip.
The third line contains an integer Q, which is the number of events.
Then Q lines follow. On the ith line, the �rst integer ti denotes the type of event i.

If ti = 1, then two integers xi, yi and a character Ci follow, where 1 ≤ xi ≤ yi ≤ N and Ci is either R , G , or B .
If ti = 2 or ti = 3, then two integers xi, yi follow, where 1 ≤ xi ≤ yi ≤ N .

OUTPUT
Answer all type 3 events in order, one per line.

 Hong Kong Olympiad in Informatics 2019 Team Formation Test

4/14

SAMPLE TESTS

Input Output

1 5

RGGRB

8

3 1 5

3 1 3

2 3 3

3 1 5

3 1 3

1 3 4 G

3 1 5

3 2 5

3

0

5

1

1

0

After event 1: RGGRB
After event 2: RGGRB
After event 3: RGBRB
After event 4: RGBRB
After event 5: RGBRB
After event 6: RGGGB
After event 7: RGGGB
After event 8: RGGGB

2 6

RGBRGB

5

3 1 6

2 1 3

3 2 5

1 1 1 R

3 1 6

10

1

6

SUBTASKS

For all cases: 1 ≤ N ,Q ≤ 4 × 105

Points Constraints

1 10 1 ≤ N ≤ 100
1 ≤ Q ≤ 1000

2 25 1 ≤ N ,Q ≤ 5000

3 30 1 ≤ N ,Q ≤ 2 × 105
There is no type 2 event and xi = yi for all type 1 events.

4 28 1 ≤ N ,Q ≤ 2 × 105

5 7 No additional constraints.

 Hong Kong Olympiad in Informatics 2019 Team Formation Test

5/14

Time Limit: 1.000 s / Memory Limit: 256 MBT193 - LIQUID LAYERS
Your laboratory has just received a secret mission from the Byteland Government. They have sent you a box of N bottles,
labeled from 1 to N , where 2 ≤ N ≤ 100. It is known that each of these bottles contains a unique type of liquid. The N types
of liquids are all colorless and tasteless, with densities di�erent from each other.

It is also known that these liquids do not mix with each other, meaning that if you pour any combination of these liquids into a
container, they will separate into layers. The layers are always ordered according to their densities: liquid with higher density
goes down, whereas liquid with lower density goes up. In the end, the layers should satisfy that: for any pair of liquid types in
the same container, the one with higher density will have its layer at a position closer to the bottom.

Here are a few examples of pouring honey (H), water (W) and vegetable oil (V) into the same container: (order of density
from highest to lowest: honey, water, vegetable oil)

Unfortunately, your laboratory is not equipped with any machine that can directly measure the density of liquids. The lucky
thing is that, there is a special machine that may help. This special machine is composed of a long test tube, a button, a counter,
and a display. Initially, the test tube is empty and the counter is set to zero. To use the machine, you can pour one type of liquid
into the test tube, as long as the test tube does not contain that type of liquid. The suggested volume is 3mL, but actually how
much you pour does not matter. Because of density di�erence between the liquids, the newly-added liquid may swap positions
with other liquid layers. Once the swapping is done, the counter will be increased by the number of swaps, and you can then
pour another type of liquid into the test tube, or press the button (the e�ect of pressing the button will be described in the next
paragraph).

Due to the constraints of this machine, the value of the counter will not be shown unless you press the button. Once you press
the button, the value of the counter will be shown on the display for a short period of time so that you could read it, but the
side e�ect is that the machine will automatically empty the test tube and reset the counter to zero.

 Hong Kong Olympiad in Informatics 2019 Team Formation Test

6/14

The following �gure illustrates how this special machine works. You may refer to the section "Sample Run" for detailed
explanation. Please note that the colors and letters on the liquids are just for better visualization.

 Hong Kong Olympiad in Informatics 2019 Team Formation Test

7/14

YOUR TASK
You are asked to order the N (2 ≤ N ≤ 100) given liquids by their densities, from highest to lowest, by utilizing the special
machine. To obtain the correct order as quickly as possible, you are required to minimize the number of times of pouring liquid
into the special machine.

It is guaranteed that, before the start of the experiment, the test tube is empty and the counter is set to zero.

IMPLEMENTATION

You should implement one subprogram experiment(int N) to simulate the process of conducting the experiment with N
bottles of liquid given.

To simulate the experiment, your subprogram experiment(int N) is allowed to make calls to the following two grader
functions (you do not have to implement these grader functions):

procedure pourLiquid(int index)
It simulates the process of pouring some amount of the liquid in the bottle labeled as index into the test tube of
the special machine.
You are not allowed to pour a liquid if, at that moment, the test tube already contains that type of liquid.

function getReading()
It simulates the process of pressing the button of the special machine.
The return value of this function is the value shown on the display.
After this function is called, the test tube will be cleared and the counter will be reset to zero.
You are not allowed to call this function when the test tube is empty.

Once you are con�dent in the density order of the N liquids, you should call the grader procedure answer(int order[])
EXACTLY ONCE. order should be an array of length N , where order[i] is the label of the bottle that contains the liquid
with the (i + 1)-th highest density. In other words:

the liquid with label order[0] has the highest density.
the liquid with label order[1] has the second highest density.
...
the liquid with label order[N-1] has the lowest density.

After calling answer(int order[]) , your subprogram experiment(int N) should return immediately. You can assume that,
for each test case, the grader will call your subprogram experiment(int N) exactly once.

 Hong Kong Olympiad in Informatics 2019 Team Formation Test

8/14

SAMPLE RUN
Suppose N = 3, liquid 1 is water (second highest density), liquid 2 is honey (highest density), liquid 3 is vegetable oil (lowest
density).

Function Call Returns Explanation

experiment(3) is called.
pourLiquid(3) Pouring vegetable oil into the test tube.

The test tube contains (from bottom to top): vegetable oil
The value of counter: 0

pourLiquid(2) Pouring honey into the test tube.
The test tube contains (from bottom to top): honey, vegetable oil
The value of counter: 1

pourLiquid(1) Pouring water into the test tube.
The test tube contains (from bottom to top): honey, water, vegetable oil
The value of counter: 2

getReading() 2 Returned the value of counter.
Cleared the test tube.
Reset the counter to zero.

pourLiquid(1) Pouring water into the test tube.
The test tube contains (from bottom to top): water
The value of counter: 0

pourLiquid(3) Pouring vegetable oil into the test tube.
The test tube contains (from bottom to top): water, vegetable oil
The value of counter: 0

getReading() 0 Returned the value of counter.
Cleared the test tube.
Reset the counter to zero.

pourLiquid(3) Pouring vegetable oil into the test tube.
The test tube contains (from bottom to top): vegetable oil
The value of counter: 0

pourLiquid(1) Pouring water into the test tube.
The test tube contains (from bottom to top): water, vegetable oil
The value of counter: 1

pourLiquid(2) Pouring honey into the test tube.
The test tube contains (from bottom to top): honey, water, vegetable oil
The value of counter: 3

getReading() 3 Returned the value of counter.
Cleared the test tube.
Reset the counter to zero.

answer([2, 1, 3]) It can be deduced that liquid 2 has the highest density, followed by liquid 1, and
then liquid 3.

experiment(3) returns.

 Hong Kong Olympiad in Informatics 2019 Team Formation Test

9/14

SCORING
IMPORTANT: In some test cases the behavior of the grader is adaptive. This means that in these test cases the grader does not
have a �xed order of density of the N liquids. Instead, the answers given by the grader may depend on the questions asked by
your solution. It is guaranteed that the grader answers in such a way that after each answer there is at least one order of density
consistent with all the answers given so far.

On each test case, you will receive zero score if your program:

does not exit correctly, or
violates any rules mentioned in the section "Implementation", or
does not order the liquid correctly.

Otherwise, your score will depend on C, the number of times pourLiquid(int index) is called.

score =

⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎨
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩

100, if C ≤ 1016

60 + 40 ×
1083 − C

1083 − 1016
, if 1016 < C ≤ 1083

48 + 12 ×
1146 − C

1146 − 1083
, if 1083 < C ≤ 1146

5 + 40 ÷ (1 + e
(
C − 4200

500
)
), if 1146 < C ≤ 9900

0, if C > 9900

Your score on this task is the lowest score you get among all test cases.

 Hong Kong Olympiad in Informatics 2019 Team Formation Test

10/14

TEMPLATE
The template below allows you to implement the necessary procedure.

(Please refer to the online version)

SAMPLE GRADER
In order to test your program, you may download the sample grader �les. To use the sample grader, you should implement your
program under the folder corresponding to the programming language, and follow the instructions below:

Language Source Code Filename Compilation Command Execution Command

Pascal experiment.pas ./compile_pas.sh ./experiment

C experiment.c ./compile_c.sh ./experiment

C++11 experiment.cpp ./compile_cpp.sh ./experiment

Please be advised that although the sample grader is intended to simulate the judging system, it is NOT the real judging system
and might behave di�erently. For instance, the sample grader is not adaptive.

When testing your programs with the sample grader, your input should match the format and constraints from the task
statement. Otherwise, unspeci�ed behaviors may occur. The sample grader reads the input in the following format:

line 1: N
line 2: order0 order1 ... orderN−1 , where

the liquid with label order0 has the highest density.
the liquid with label order1 has the second highest density.
...
the liquid with label orderN−1 has the lowest density.

The labels should be distinct integers between 1 to N (inclusive).

If your program correctly �nds out the order of the density, the sample grader outputs Correct , followed by the value of C
and your score on that case. Otherwise, it outputs Wrong Answer , followed by a message suggesting what might have been
done incorrectly. The sample grader also prints the function calls in the standard error stream.

To read from �le, you may use: ./experiment < input.txt
To print the function calls to �le, you may use: ./experiment 2> calls.txt
To read from �le and print the function calls to �le, you may use: ./experiment < input.txt 2> calls.txt

SAMPLE TESTS

Input Output

1 3

2 1 3

Correct.

C = 8, score = 100.000

 Hong Kong Olympiad in Informatics 2019 Team Formation Test

11/14

Time Limit: 1.000 s / Memory Limit: 256 MBT194 - ROULETTE
You are the manager of a casino, running a training course for the dealers. The topic today is roulette manipulation.

The roulette consists of a full circle divided into C equal parts (cells), conveniently numbered from 1 to C, in clockwise order.
There are N "cell groups" that one can bet on. Group i occupies Ai contiguous cells. Group 1 occupies cells [1,A1], group 2
occupies cells [A1 + 1,A1 + A2], and so on.

When all bets are made, the dealer will roll the ball around the roulette. After a while, the ball will fall into exactly one cell, and
everyone who bets on the group that contains that cell will receive a payo� equal to the amount they have bet.

There are M dealers and they have not mastered the craft of controlling ball movement yet. The dealers can choose a starting
cell for the ball, then let it roll clockwise through some number of cells, until the ball stops. When the i-th dealer rolls the ball,
the ball will roll through LOWi to UPi cells (inclusive). Each possibility has a nonzero probability of occurrence.

Given the amount bet on each group (Bi for group i), determine, for each dealer, an optimal starting position so that the
maximum payo� is minimized.

Here is an example with N = 3 cell groups and M = 3 dealers. We use cyan, green and red to represent groups 1, 2 and 3
respectively. The cyan region consists of the �rst A1 = 2 cells, the green region consists of the next A2 = 2 cells, and the red
region consists of the last A3 = 4 cells.

If the ball is inside the cyan region, the payo� will be B1 = 2.
If the ball is inside the green region, the payo� will be B2 = 3.
If the ball is inside the red region, the payo� will be B3 = 5.

For dealer 1, LOW1 = 4 and UP1 = 4. Starting at position 5 is optimal; the maximum payo� will be 2. (Note that starting at
position 6 is equally good.)

after rolling through 4 cells

⟶

For dealer 2, LOW2 = 11 and UP2 = 13. Starting at position 7 is optimal; the maximum payo� will be 3. (Note that starting
at position 6 is equally good.)

after rolling through 11,12,13 cells

⟶

For dealer 3, LOW3 = 1 and UP3 = 1000000000. Dealer 3 has such dreadful skills, it does not matter where to start rolling.
(It is perhaps best not to let him handle the roulette.)

 Hong Kong Olympiad in Informatics 2019 Team Formation Test

12/14

INPUT
The �rst line contains an integer N , the number of groups.
The second line contains N integers Ai, denoting the size of the i-th group.
The third line contains N integers Bi, denoting the bet on the i-th group.
The forth line contains an integer M , the number of dealers.
M lines follow, each line contains two integers LOWi and UPi, describing the i-th dealer.

OUTPUT
Output M lines. On the i-th line, output an optimal starting position for the i-th dealer so that the maximum payo� is
minimized.
If there is more than one optimal solution, you can output any of them.

SAMPLE TESTS

Input Output

1 3

2 2 4

2 3 5

3

4 4

11 13

1 1000000000

5

7

1

Sample 1 is exactly the example in the problem statement.

2 2

1000000000 1000000000

1 1000000000

2

1 1

1000000000 1000000000

1

2000000000

This case satis�es the constraints of subtask 1.

 Hong Kong Olympiad in Informatics 2019 Team Formation Test

13/14

SUBTASKS
For all cases:
1 ≤ N ,M ≤ 105,
1 ≤ Ai ≤ 109,
0 ≤ Bi ≤ 109,
1 ≤ LOWi ≤ UPi ≤ 109

Points Constraints

1 8 LOWi = UPi for all 1 ≤ i ≤ M

2 9 1 ≤ N ,M ≤ 500
Sum of Ai ≤ 500

3 12 1 ≤ N ,M ≤ 5000
Sum of Ai ≤ 5000

4 34 Ai = 1 for all 1 ≤ i ≤ N

5 37 No additional constraints

 Hong Kong Olympiad in Informatics 2019 Team Formation Test

14/14

