
Hong Kong Olympiad in Informatics 2017/18

Heat Event (Junior Group)

Official Solution

Statistics (N = 256)

Full mark = 45. Maximum = 40. Median = 13. Advance to Final = 17.5 marks or above.

Section A

Q A Explanation

1 T Both the size of a character (char) variable and that of a Boolean (Pascal: boolean,

C/C++: bool) variable are 1 byte.

2 T It is possible to write a program without using any IDE. One of the ways is to code

using a text editor, then pass the text file to a compiler.

3 F Array indexes of a[] can only be integers between 0 and 9.

4 F The maximum number of swaps required is N-1. One example is [2, 3, 4, 5, 6, 1]

which requires 5 swaps to sort the array ascendingly.

5 F 404 means that the client is able to communicate with a given server, but the server

could not find what was requested. There is no internal server error.

6 C Ways required: 10C1 (ways to choose 1 president from 10 members) * 9C2 (ways to

choose 2 presidents from 9 members, after selecting the president) = 10 * 9 * 8 / 2 =

360.

7 A ASCII supports English alphabets, numbers, symbols and non-printing characters but

not Chinese characters.

8 C Total number of possible answers = 16 - (-16) + 1 = 33

The optimal strategy is to eliminate half of the possible answers each time. The

maximum number of questions needed to know the exact value of the integer =

⌈log233⌉.

9 D Note that the question says “if Charlie gets full marks in the final exam, he feels

happy”. It is possible that Charlie feels happy even if he doesn’t get full marks in the

final exam. Same for “if Charlie feels happy and it is raining outside, he plays

computer games at home”.

10 C It’s impossible for “a = b” and “a < b” to happen at the same time. So option (i) is

wrong. While it’s impossible to have “a > b” because x-1 must be smaller than x+1,

hence (x – 1) / 2 must not be larger than (x + 1) / 2.

11 B x div 10 (x / 10 in C and C++) = 12

x mod 10 (x % 10 in C and C++) = 3

12 + 100 * 3 = 312

12 A There are only 3 possible pairings:

(1) W vs X; Y vs Z

(2) W vs Y; X vs Z

(3) W vs Z; X vs Y

For pairing (1), W and Z will advance to the finals and Z always wins. Hence (i) is an

impossible to happen.

For pairing (2), Y and X will advance to the finals and Y always wins. Hence (ii) is

possible to happen.

For pairing (3), Z and Y will advance to the finals and Z always wins.

Final match between Y and W is never impossible to happen, so (iii) is wrong.

13 D (i): If a = b, the value of a or b (a | b in C and C++) and a and b will both be equal

to a (and also b). When values of a and b differ, values of a or b and a and b will not

be equal, hence (i) is correct.

(ii): For xor operations, if two digits of the same position are the same, 0 will be

returned. On the other hand, if two digits of the same position aren’t the same, 1 will

be returned. a xor b would be 0 if and only if a = b. (ii) is correct.

14 D Value of s[i + arr[i]] is replaced by that of s[i + 1] in each for-loop.

When i = 1, the (1 + 1) 2nd character is replaced by (1 + 1) 2nd character in s.

s = “hkoi201718”

When i = 2, the (2 + 4) 6th character is replaced by (2 + 1) 3rd character in s.

s = “hkoi2o1718”

When i = 3, the (3 + 0) 3rd character is replaced by (3 + 1) 4th character in s.

s = “hkii2o1718”

When i = 4, the (4 + 3) 7th character is replaced by (4 + 1) 5th character in s.

s = “hkii2o2718”

When i = 5, the (5 + 5) 10th character is replaced by (5 + 1) 6th character in s.

s = “hkii2o271o”

When i = 6, the (6 + 2) 8th character is replaced by (6 + 1) 7th character in s.

s = “hkii2o221o”

15 B A: output = 36

B: output = 51 *

C: output = 40

D: output = 25

16 C Note that in the end, only when i is even, a[i] would be equal to i. Hence the sum =

20 + 18 + 16 + … + 4 +2 = (2 + 20) * 10 / 2 = 110

17 B A: output = 28 32

B: output = 30 30 *

C: output = 31 29

D: output = 32 28

18 C The program returns the digits sum of x. Digits sum of x = 2 + 0 + 1 +8 = 11

19 C f is implementing the push operation of a stack while g is implementing the pop

operation of a stack.

20 D Value of x and y that results in output of “ab” can be 9 and 10.

Value of x and y that results in output of “ac” can be 5 and 6.

Value of x and y that results in output of “bc” can be 11 and 10.

21 D (i) cannot be re-ordered to form a palindrome as frequencies ‘A’ and ‘C’ are odd.

(ii) can be re-ordered to form XYZZZYX, which is a palindrome.

(iii) can be re-ordered to form PPQRSSSSRQPP, which is a palindrome.

22 D (i) cannot be re-ordered to form a palindrome as frequencies of ‘A’, ‘B’ and ‘C’ are

different.

(ii) can be re-ordered to form HKOIHKOI, which is a periodic string.

(iii) can be re-ordered to form IOIPPPIOIPPP, which is a periodic string.

23 A f(n) returns the value with the trailing 0s of n in binary representation removed.

Return value of f(65) = 65 (6510 = 10000012) *

Return value of f(122) = 61 (12210 = 11110102 , 6110

= 1111012)

Return value of f(4032) = 63 (403210 = 1111110000002 , 6310

= 1111112)

Return value of f(65536) =1 (6553610 = 100000000000000002)

24 A We just need to access a[499] to obtain the value of x.

25 A Notice that A nor B ≡ (not A) and (not B).

Option A:

A nor (B nor B)

≡ (not A) and (not((not B) and (not B)))

≡ (not A) and (not(not B))

≡ (not A) and B *

Section B

Answer and Explanation

 Pascal C C++

A1 a+x a+x a+x

A2 5050-a 5050-a 5050-a

By subtracting the sum of a from the sum of adding up 1 to 100 [(1 + 100) * 100 / 2 = 5050],

the target number can be found.

B t:=a[x];a[x]:=a[y];

a[y]:=t

t=a[x];a[x]=a[y];

a[y]=t

t=a[x];a[x]=a[y];

a[y]=t

C k-i-1 // k-i // k div 2 //

 (k+1) div 2

k-i-1 // k-i // k/2 //

(k+1)/2

k-i-1 // k-i // k/2 //

(k+1)/2

To ensure that the swapping isn’t done to the same pair of characters twice.

D f(100);f(k);f(100) f(100);f(k);f(100) f(100);f(k);f(100)

The first f(100) is to reverse the whole array. f(k) is to reverse the last k elements in the

original array in the original order. Then f(100) follows is to reverse the whole array back

again. In the end only the last k elements are reversed.

E E1 A5

F

E1 C5 / E1 A3 / E3 A5 / C1 A5

First of all, we need to know the number of valid paths passing through each cell in the grid.

To calculate this, we can first find out the number of ways a path from S to T can reach each

cell (dp1) and the number of ways a path from T to S can reach each cell (dp2) (which is equal

to dp1 in this case as the grid is a square). For a cell in row (R+1) and row (C+1), the number of

ways = (R+C)! / (R! C!). We can then multiply dp1[i][j] *dp2[i][j] for each cell (i, j) to get the

information.

Back to the problem, we can notice that if two Cs are placed with a “top right, bottom left”

relation, there won’t be a path passing through both Cs. If we place the two Cs like this, the

number of interesting paths would be the sum of number of paths passing through these two

cells. (Of course we can place the Cs in other ways, but the problem will get more complicated

as we need to subtract the number of paths passing through more than 1 C) Hence we can just

choose two cells with their path sum = the number required by the question.

G 96 96 96

The worst case can be “abcdefg…xyzabcdefg…xyz…”. In this case, we can keep all of any one

of the most frequently appeared letter and the frequency would be ⌈100/26⌉ = 4. Hence 100 – 4

= 96 characters need to be removed in the worst case.

H x xor 32 x^32 x^32

Notice that the ASCII value of any lowercase letter and its corresponding uppercase letter

differs by 32 (For example ‘A’ = 65; ‘a’ = 97). 32 is a power of two, which is exactly a digit

value of a binary number. By doing x xor 32, the 6
th
 bit of the ASCII value (tmp) is converted

to 1 if it is 0, or it’s converted to 0 if it’s 1 originally, meaning that a subtraction/ addition of 32

to the ASCII value (tmp) is done.

I1 num[i]+abs(num[i]) num[i]+abs(num[i]) num[i]+abs(num[i])

I2 temp div 2 temp/2 temp/2

When num[i] is positive, num[i]+abs(num[i]) will add the value of num[i] to temp

twice. When num[i] is negative, num[i] and abs(num[i]) will actually eliminate each

other, ending up with nothing added to temp.

Since for each of the positive values num[i] is added to temp twice, dividing temp by two will

lead to a correct answer.

J1 i:=2; i=2; i=2;

2 is the smallest possible factor of n. (excluding 1)

J2 n mod i=0 n%i==0 n%i==0

There exist a factor other than 1 and n.

K answer+is_prime(i) answer+is_prime(i) answer+is_prime(i)

L1 29 58 88

L2 for i:=0 to 10000 do for (i=0;i<=10000;i++) // for(i=0;i<10001;i++)

This for-loop should be iterating the range of input (i.e. 0 to 10000) but not the number of

integers inputted.

