Hong Kong Olympiad in Informatics 2017/18 Heat Event (Junior Group) Official Solution

Statistics (N = 256)

Full mark = 45. Maximum = 40. Median = 13. Advance to Final = 17.5 marks or above.

Section A						
Q A		Explanation				
1 T		Both the size of a character (char) variable and that of a Boolean (Pascal: boolean,				
		C/C++: bool) variable are 1 byte.				
2	Т	It is possible to write a program without using any IDE. One of the ways is to code				
		using a text editor, then pass the text file to a compiler.				
3	F	Array indexes of a[] can only be integers between 0 and 9.				
4	F	The maximum number of swaps required is N-1. One example is [2, 3, 4, 5, 6, 1]				
		which requires 5 swaps to sort the array ascendingly.				
5	F	404 means that the client is able to communicate with a given server, but the server				
		could not find what was requested. There is no internal server error.				
6	C Ways required: 10C1 (ways to choose 1 president from 10 members) * 90					
		choose 2 presidents from 9 members, after selecting the president) = $10 * 9 * 8 / 2 =$				
		360.				
7	А	ASCII supports English alphabets, numbers, symbols and non-printing characters but				
		not Chinese characters.				
8	C Total number of possible answers = $16 - (-16) + 1 = 33$					
		The optimal strategy is to eliminate half of the possible answers each time. The				
		maximum number of questions needed to know the exact value of the integer =				
		[log ₂ 33].				
9	D	Note that the question says "if Charlie gets full marks in the final exam, he feels				
		happy". It is possible that Charlie feels happy even if he doesn't get full marks in the				
		final exam. Same for "if Charlie feels happy and it is raining outside, he plays				
		computer games at home".				
10	С	It's impossible for " $a = b$ " and " $a < b$ " to happen at the same time. So option (i) is				
		wrong. While it's impossible to have " $a > b$ " because x-1 must be smaller than x+1,				
		hence $(x - 1) / 2$ must not be larger than $(x + 1) / 2$.				
11	В	x div $10 (x / 10 \text{ in } C \text{ and } C++) = 12$				
		x mod 10 (x % 10 in C and C++) = 3				
		12 + 100 * 3 = 312				

12	А	There are only 3 possible pairings:
		(1) W vs X; Y vs Z
		(2) W vs Y; X vs Z
		(3) W vs Z; X vs Y
		For pairing (1), W and Z will advance to the finals and Z always wins. Hence (i) is an
		impossible to happen.
		For pairing (2), Y and X will advance to the finals and Y always wins. Hence (ii) is
		possible to happen.
		For pairing (3), Z and Y will advance to the finals and Z always wins.
		Final match between Y and W is never impossible to happen, so (iii) is wrong.
13	D	(i): If $a = b$, the value of a or b ($a \mid b$ in C and C++) and a and b will both be equal
		to a (and also b). When values of a and b differ, values of a or b and a and b will not
		be equal, hence (i) is correct.
		(ii): For xor operations, if two digits of the same position are the same, 0 will be
		returned. On the other hand, if two digits of the same position aren't the same, 1 will
		be returned. a xor b would be 0 if and only if $a = b$. (ii) is correct.
14	D	Value of s[i + arr[i]] is replaced by that of s[i + 1] in each for-loop.
		When $i = 1$, the $(1 + 1)$ 2nd character is replaced by $(1 + 1)$ 2nd character in s.
		s = "hkoi201718"
		When $i = 2$, the (2 + 4) 6th character is replaced by (2 + 1) 3rd character in s.
		s = "hkoi2o1718"
		When $i = 3$, the $(3 + 0)$ 3rd character is replaced by $(3 + 1)$ 4th character in s.
		s = "hkii201718"
		When $i = 4$, the (4 + 3) 7th character is replaced by (4 + 1) 5th character in s.
		s = "hkii2o2718"
		When $i = 5$, the (5 + 5) 10th character is replaced by (5 + 1) 6th character in s.
		s = "hkii2o271o"
		When $\mathbf{i} = 6$, the (6 + 2) 8th character is replaced by (6 + 1) 7th character in s.
		s = "hkii2o <u>22</u> 1o"
15	В	A: output = 36
		B: output = 51 *
		C: $output = 40$
		D: output = 25
16	С	Note that in the end, only when i is even, a[i] would be equal to i. Hence the sum =
		$20 + 18 + 16 + \ldots + 4 + 2 = (2 + 20) * 10 / 2 = 110$
17	В	A: output = 28 32
		B: output = 30 30 *
		C: output = $31\ 29$
		D: output = 32.28
		•

18	С	The program returns the digits sum of x. Digits sum of $x = 2 + 0 + 1 + 8 = 11$		
19	С	f is implementing the push operation of a stack while g is implementing the pop		
		operation of a stack.		
20	D	Value of x and y that results in output of "ab" can be 9 and 10.		
		Value of x and y that results in output of "ac" can be 5 and 6.		
		Value of x and y that results in output of "bc" can be 11 and 10.		
21	D	(i) cannot be re-ordered to form a palindrome as frequencies 'A' and 'C' are odd.		
		(ii) can be re-ordered to form XYZZZYX, which is a palindrome.		
		(iii) can be re-ordered to form PPQRSSSSRQPP, which is a palindrome.		
22	D	(i) cannot be re-ordered to form a palindrome as frequencies of 'A', 'B' and 'C' are		
		different.		
		(ii) can be re-ordered to form HKOIHKOI, which is a periodic string.		
		(iii) can be re-ordered to form IOIPPPIOIPPP, which is a periodic string.		
23	А	f(n) returns the value with the trailing 0s of n in binary representation removed.		
		Return value of $f(65) = 65 (65_{10} = 1000001_2) *$		
		Return value of $f(122) = 61 (122_{10} = 1111010_2, 61_{10} = 111101_2)$		
		Return value of $f(4032) = 63 (4032_{10} = 111111000000_2, 63_{10} = 111111_2)$		
		Return value of $f(65536) = 1$ (65536 ₁₀ = 10000000000000000 ₂)		
24	А	We just need to access a[499] to obtain the value of x.		
25	А	Notice that A nor $B \equiv (not A)$ and (not B).		
		Option A:		
		A nor (B nor B)		
		\equiv (not A) and (not((not B) and (not B)))		
		\equiv (not A) and (not(not B))		
		\equiv (not A) and B *		

Section B

Answer and Explanation							
	Pascal	С	C++				
A1	a+x	a+x	a+x				
A2	5050-a	5050-a	5050-a				
	By subtracting the sum of a from the sum of adding up 1 to $100 [(1 + 100) * 100 / 2 = 5050]$,						
		the target number can be found.					
В	t:=a[x];a[x]:=a[y];	t=a[x];a[x]=a[y];	t=a[x];a[x]=a[y];				
	a[y]:=t	a[y]=t	a[y]=t				
С	k-i-1// k-i// k div 2 //	k-i-1 // k-i // k/2 //	k-i-1 // k-i // k/2 //				
	(k+1) div 2	(k+1)/2	(k+1)/2				
	To ensure that the sw	apping isn't done to the same pa	ir of characters twice.				
D	f(100);f(k);f(100)	f(100);f(k);f(100)	f(100);f(k);f(100)				
	The first $f(100)$ is to reverse the whole array. $f(k)$ is to reverse the last k elements						
	original array in the original order. Then f(100) follows is to reverse the whole array back						
	again. In the end only the last k elements are reversed.						
E		E1 A5					
	E1 C5 / E1 A3 / E3 A5 / C1 A5						
	First of all, we need to know the number of valid paths passing through each cell in the grid.						
	To calculate this, we can first	ath from S to T can reach each					
	cell (dp1) and the number of wa	each cell (dp2) (which is equal					
	to dp1 in this case as the grid is a square). For a cell in row (R+1) and row (C+1), the number of						
F][j] for each cell (i, j) to get the						
	Back to the problem, we can notice that if two Cs are placed with a "top right, bottom left"						
	relation, there won't be a path passing through both Cs. If we place the two Cs like this, the						
	number of interesting paths would be the sum of number of paths passing through these two						
	cells. (Of course we can place the Cs in other ways, but the problem will get more complicated						
	as we need to subtract the number of paths passing through more than 1 C) Hence we can just						
	choose two cells with their path sum = the number required by the question.						
G	96	96	96				
	The worst case can be "abcdefgxyzabcdefgxyz". In this case, we can keep all of any one						
	of the most frequently appeared letter and the frequency would be $[100/26] = 4$. Hence 10						
	= 96 characters need to be removed in the worst case.						

Н	x xor 32	x^32	x^32					
	Notice that the ASCII value of any lowercase letter and its corresponding uppercase							
	differs by 32 (For example 'A' = 65; 'a' = 97). 32 is a power of two, which is exactly a digit							
	value of a binary number. By doing x xor 32, the 6^{th} bit of the ASCII value (tmp) is converted							
	to 1 if it is 0, or it's converted to 0 if it's 1 originally, meaning that a subtraction/ addition of 32							
	to the ASCII value (tmp) is done.							
I1	<pre>num[i]+abs(num[i])</pre>	<pre>num[i]+abs(num[i])</pre>	num[i]+abs(num[i])					
I2	temp div 2	temp/2	temp/2					
	When num[i] is positive, num[i]+abs(num[i]) will add the value of num[i] to temp							
	twice. When num[i] is negative, num[i] and abs(num[i]) will actually eliminate each							
	other, ending up with nothing added to temp.							
	Since for each of the positive values num[i] is added to temp twice, dividing temp by two will							
	lead to a correct answer.							
J1	i:=2;	i=2;	i=2;					
	2 is the s	cluding 1)						
J2	n mod i=0	n%i==0	n%i==0					
	There exist a factor other than 1 and n.							
Κ	answer+is_prime(i)	answer+is_prime(i)	answer+is_prime(i)					
L1	29	58	88					
L2	for i:=0 to 10000 do	for (i=0;i<=10000;i++)	// for(i=0;i<10001;i++)					
	This for-loop should be iterating the range of input (i.e. 0 to 10000) but not the number of							
	integers inputted.							