Hong Kong Olympiad in Informatics 2016/17
Heat Event (Senior Group)
Official Solution

Statistics ($\mathbf{N}=\mathbf{2 3 8}$)

Full mark $=45$. Maximum $=36$. Median $=14.5$. Advance to Final $=17$ marks or above.

Section A

Q A Explanation

1 B We can compare $1^{\text {st }}$ and $2^{\text {nd }}$ element, $3^{\text {rd }}$ and $4^{\text {th }}$ element, and compare the larger one of them to get the maximum element. Then compare the smaller one of them to get the minimum element. Total comparisons is 4.
2 C In the worst case, (i) is $\mathrm{O}(\mathrm{N})$, (ii) is $\mathrm{O}(\mathrm{N} \log \mathrm{N})$, (iii) is $\mathrm{O}(\operatorname{logN})$
3 C Since $2017=11111100001$ (binary), all the bits from 0 to 10 from leftmost has appeared. So the OR sum of 1 to 2017 is $2^{\wedge} 11-1=2047$
$4 \quad \mathrm{C}$ We can turn the graph into a tree. A tree is a graph with N node and $\mathrm{N}-1$ edge which all the node is connected. So, the maximum edge we can delete is $13-(10-1)=4$. The following is one of the solution.

5 A We can observe that a is made by repeating $\{1,5,8,2,3\} 20$ times. So the sum is ($1+$ $5+8+2+3) \times 20=380$
6 D Ransomware is a type of malicious software which encrypts the victim's files, making them inaccessible and demands a ransom payment to decrypt them.
7 A The nature of nested function calling and returning is the same as that of a stack.
$8 \quad \mathrm{~B} \quad \mathrm{~A}=[0,6]$
$\mathrm{B}=[0,4]$
$\mathrm{B}-\mathrm{A}=[0,4]-[0,6]=[-6,4]=11$ possible outputs.
$9 \quad$ B Assume B is the correct answer.
Let the correct answer be T and the wrong answer be F . Since there is only one correct answer:
$\mathrm{A}=\mathrm{F}, \mathrm{B}=\mathrm{T}, \mathrm{C}=\mathrm{F}, \mathrm{D}=\mathrm{F}$
When A is F , ($\mathrm{B}!=\mathrm{T}$ and $\mathrm{C}!=\mathrm{T}$) need to be false
When B is T , $(\mathrm{C}!=\mathrm{T}$ and $\mathrm{D}!=\mathrm{T})$ need to be true
When C is $\mathrm{F},(\mathrm{C}=\mathrm{T})$ need to be false
When D is F , ($\mathrm{A}!=\mathrm{T}$ and $\mathrm{B}!=\mathrm{T}$) need to be false.
The situation in above satisfy all the restrictions. So B is the answer, other cases will result in contradiction.
10 C AlphaGo is a Ai computer program developed by Google that plays the board game Go.
Deep blue is designed for playing chess. Pokémon Go is a mobile phone game. DuckDuckgo is a search engine.
11 D Program A is insertion sort as in each for loop, a[0..i-1] is already sorted and it moves $\mathrm{a}[\mathrm{i}]$ to the suitable position.
12 A There is only two cases to pick two numbers which their product is not a multiple for four.

1. odd x odd
2. 2 kx odd, where k is an odd number

So the number of ways is $50 \mathrm{C} 2+50 \times 25=2475$
13 A If we place a rook on (x, y), we cannot place any rook on row x and column y any more. So, we can view place a rook on (x, y) as delete row x and column y. If the player cannot delete any row or column (all row or column is deleted), he loses.

So we only care about $\min (N, M)$ as after $\min (N, M)$ moves, row or column are all deleted and the game is ended. If $\min (N, M)$ is odd, then the first player win, else the first player lose.

Only $\min (3,5)$ is odd, so only when $\mathrm{N}=3$ and $\mathrm{M}=5$, Alice will win.
14 B No matter $\mathrm{f}(\mathrm{x})$ will overflow, $\mathrm{f}(\mathrm{x})$ is always even number.
When $x * 2>=2^{\wedge} 31$, x will overflow and become negative number.
E. $\mathrm{g}\left(2^{\wedge} 30\right)=2^{\wedge} 31=2147483648=-2147483648$. So (i) is true and (ii) is false.

15 A An undirected graph has an Eulerian path if and only if exactly zero or two vertices have odd degree, and all of its vertices with nonzero degree belong to a single connected component.
16 C (ii) is not possible because when Alice go, Bob will also go. So there don't exist situation that when Alice go, Bob doesn't go.
17 C One way to do this question is to trace carefully. Other way is to observe that the output is the sum of $a[2 . .3][3 . .4]$ where $a[i][j]=i * 4+j$.

18 A If one of x or y is negative integer, (i), (ii) and (iii) may wrong because of two's complement.
19 B Trace the program carefully and will get the following result.
$\mathrm{A}=20$
$B=40$
$\mathrm{C}=30$
D $=30$
20 A The program will output a * $\max (0,(8-b))$ number of *s.
So A will output 12 s. B will output 10 *s. C will output 0 *s. D will output 11 *s.
21 D Notice in the j for loop, it compare $\mathrm{a}[\mathrm{i}]$ and $\mathrm{a}[\mathrm{i}+1]$ but not $\mathrm{a}[\mathrm{j}]$ and not $\mathrm{a}[\mathrm{j}+1]$. So it is not bubble sort. Trace the program carefully and you will get the answer.
22 D Because 0.2 cannot precisely represented by floating point data type but 2.0 can, so ' B ' is not outputted and ' C ' is outputted.
23 A Notice that $7!=5040>2017$.
So ai is <7 for any i from 1 to n.

We can use greedy algorithm, which pick the number k from 6 to 0 whenever the current sum $+\mathrm{k}!<=2017$, to find out the solution which n is minimized.

We can get $2 * 6!+4 * 5!+4 * 4!+1!=1440+480+96+1=2017$.

However, since $0!=1!=1$, we can replace $1!$ with $0!$. So the sum of ai $=2 * 6+4 * 5$ $+4 * 4+0=48$
24 C The $3^{\text {rd }}$ line only restrict that data has to be an array and the first element of data is a number. So it CAN store an array of 10 numbers.
25 D a.slice (x, y) extracts a section of array from $\mathrm{a}[\mathrm{x}]$ to $\mathrm{a}[\mathrm{y}]$. If y is omitted, the a.slice (x) extracts a section of array from $a[x]$ to end of array.
So a.slice(0) extract array a from a[0] to its end, which means make a copy of array.

Section B

Answer and Explanation		
A1	22	62
A2	$\mathrm{a}[\mathrm{j}+1]:=\mathrm{t}$;	$a[j+1]=t ;$
	j is the last index where $a[j]<=t$, so we should insert t in $a[j+1]$	
B	7	
C	$753 \mathrm{x}+84 /-\mathrm{OR} 753 \times 84 /-+$	
D	1, 7, 10 (allow permutation)	
E	3	
F	st + ed - i	
	st + ed - i means the last $\mathrm{i}^{\text {th }}$ element	
G	true	true or 1
	A character is always a palindrome	
H	$s[s t]=s[e d]$	$s[s t]==s[e d]$
	A string of two character is palindrome if both characters are equal	
I	$(s[s t]=s[e d])$ and $f(s t+1$, ed 1) (Accept reverse order)	$\begin{gathered} s[s t]==s[e d] \& \& f(s t+1, \text { ed }- \\ 1) \\ \\ \text { (Accept reverse order) } \end{gathered}$
	A palindrome is made by two equal character including another palindrome	
J	$\left(x^{*} x^{*} \mathrm{x} * \mathrm{x} \bmod \mathrm{y}=0\right)$ and $\left(\mathrm{y}^{*} \mathrm{y}^{*} \mathrm{y} * \mathrm{y} \bmod \mathrm{x}=0\right)$	
	$\mathrm{X}^{*} \mathrm{x}^{*} \mathrm{x}^{*} \mathrm{x} \% \mathrm{y}==0$ \&\& $\mathrm{y}^{*} \mathrm{y}^{*} \mathrm{y}^{*} \mathrm{y} \% \mathrm{x}==0$	
	Because $2^{\wedge} 5=32>30$, so in prime factorization, the power of prime must $<=4$. If we take the number to the power of 4 , one can always be divided by other number if they have common prime set.	
K	$\min (\mathrm{a} * \mathrm{a} * 9+4+\mathrm{a}, \mathrm{b} * \mathrm{~b} * 9+4+\mathrm{b}) \bmod 9-4$	
	$\min \left(\mathrm{a} * \mathrm{a} * 9+4+\mathrm{a}, \mathrm{b} * \mathrm{~b}^{*} 9+4+\mathrm{b}\right) \% 9-4$	
	Square the number to compare abs(a) and abs(b). Then we have to compare a and b, because $[-4,4]$ have 9 number, we first multiply 9 to the square, so that the number is now $=0(\bmod$ 9). After that we add 4 plus that number (we treat -4 as 0 and 4 as 9). Finally, mod the number by 9 and minus 4 to get the original number. In this way, we can compare the absolute value first, then the original value.	
L	16	
	Count the number of pairs such that $a[j]>a[i]$ and $j<i$	
M	17	
	Count the number of tuples such that $a[k]>a[j]>a[i]$ and $k<j<i$	

