Hong Kong Olympiad in Informatics 2016/17
Heat Event (Junior Group)
Official Solution

Statistics ($\mathbf{N}=\mathbf{2 5 6}$)

Full mark $=45$. Maximum $=41$. Median $=16.75$. Advance to Final $=20$ marks or above.

Section A

Q	A	Explanation
1	F	Random-Access Memory(RAM) is a hardware which cannot be downloaded from the Internet.
2	F	Both USB 2.0 and USB 3.0 data signals are digital. One of the reason why USB 3.0 has higher data transfer rate is because it supports full duplex data transfer.
3	T	A char requires 1 byte (8 bits) to represent $0 \sim 255$ (or $-128 \sim 127$ depend on compiler).
4	T	No matter when x is true or false, (x and (not x$)$) is always false.
5	F	Here is the proof.
6	D	Ransomware is a type of malicious software which encrypts the victim's files, making them inaccessible and demands a ransom payment to decrypt them.
7	A	The nature of nested function calling and returning is the same as that of a stack.
8	B	$\begin{aligned} & \mathrm{A}=[0,6] \\ & \mathrm{B}=[0,4] \\ & \mathrm{B}-\mathrm{A}=[0,4]-[0,6]=[-6,4]=11 \text { possible outputs. } \end{aligned}$
9	B	Assume B is the correct answer. Let the correct answer be T and the wrong answer be F. Since there is only one correct answer: $\mathrm{A}=\mathrm{F}, \mathrm{~B}=\mathrm{T}, \mathrm{C}=\mathrm{F}, \mathrm{D}=\mathrm{F}$ When A is F , $(\mathrm{B}!=\mathrm{T}$ and $\mathrm{C}!=\mathrm{T})$ need to be false When B is T , $(\mathrm{C}!=\mathrm{T}$ and $\mathrm{D}!=\mathrm{T})$ need to be true When C is $\mathrm{F},(\mathrm{C}=\mathrm{T})$ need to be false When D is F , ($\mathrm{A}!=\mathrm{T}$ and $\mathrm{B}!=\mathrm{T}$) need to be false. The situation in above satisfy all the restrictions. So B is the answer, other cases will result in contradiction.
10	C	AlphaGo is a Ai computer program developed by Google that plays the board game Go. Deep blue is designed for playing chess. Pokémon Go is a mobile phone game. DuckDuckgo is a search engine.

11 D Program A is insertion sort as in each for loop, a[0..i-1] is already sorted and it moves $\mathrm{a}[\mathrm{i}]$ to the suitable position.
Program B and C can't sort the number correctly.
Program B is bubble sort as in each i for loop, it move the smallest number in a[i..n 1] into a[i]
12 B There is only two cases to pick two numbers which their product is not a multiple for four.

1. odd x odd
2. $\{2,6\} \times$ odd

So the number of ways is $4 \mathrm{C} 2+2 * 4=14$.
13 A If we place a rook on (x, y), we cannot place any rook on row x and column y any more. So, we can view place a rook on (x, y) as delete row x and column y . If the player cannot delete any row or column (all row or column is deleted), he loses.

So we only care about $\min (\mathrm{N}, \mathrm{M})$ as after $\min (\mathrm{N}, \mathrm{M})$ moves, row or column are all deleted and the game is ended. If $\min (N, M)$ is odd, then the first player win, else the first player lose.

Only $\min (3,5)$ is odd, so only when $\mathrm{N}=3$ and $\mathrm{M}=5$, Alice will win.
14 B No matter $\mathrm{f}(\mathrm{x})$ will overflow, $\mathrm{f}(\mathrm{x})$ is always even number.
When $x * 2>=2^{\wedge} 31$, x will overflow and become negative number.
E.g $\mathrm{f}\left(2^{\wedge} 30\right)=2^{\wedge} 31=2147483648=-2147483648$. So (i) is true and (ii) is false.

15 B Notice that we only need to consider the last character since y can always be express in $16 \mathrm{k}+\left(\mathrm{s}[\mathrm{n}-1]-\mathrm{A}^{\prime}\right)$ where 16 k is a even number. So we only care about ($\mathrm{s}[\mathrm{n}-1]-$ ' A ') is even or not. Only (ii) satisfy it. (' E ' - 'A' $=4=$ even number)
16 C (ii) is not possible because when Alice go, Bob will also go. So there don't exist situation that when Alice go, Bob doesn't go.
17 A Let's rephrase the question in to the following.
Which of the expression is same as ($x>=y$)
b) $(-x<=-y)$
c) $(y<x)$
d) ! $(x-y<=y-x)$
$b=(-x<=-y)=(x>=y)$
c) $(y<x)=(x>y)$
$d=!(x-y<=y-x)=!(x<=y)=x>y$

So only b is same as ($x>=y$)

18 D Since x and y is unsigned integer. ($\mathrm{x}||\mid \mathrm{y}$) performs logical OR on x 's and y 's bit patterns. So no 1's bit will lost and the result is always $>=x$ and $>=y$.
($\mathrm{x}||\mid \mathrm{y}$) performs logical AND on x's and y's bit patterns. So no 1's bit will gain and the result is always $<=x$ and $<=y$.

So both (i), (ii) and (iii) are true.
19 B Trace the program carefully and will get the following result.
$\mathrm{A}=20$
$B=40$
C $=30$
$\mathrm{D}=30$
20 A The program will output a * $\max (0,(8-\mathrm{b}))$ number of $* \mathrm{~s}$.
So A will output 12 *s. B will output 10 *s. C will output 0 s. D will output 11 *s.
21 D Notice in the j for loop, it compare $\mathrm{a}[\mathrm{i}]$ and $\mathrm{a}[\mathrm{i}+1]$ but not $\mathrm{a}[\mathrm{j}]$ and not $\mathrm{a}[\mathrm{j}+1]$. So it is not bubble sort. Trace the program carefully and you will get the answer.
22 C There is 3 if part in this program.

1) if (score >=90) cout << "A"; else if (score $>=80$) cout << "B";
2) if (score $>=70$) cout $\ll " \mathrm{C}$ ";
3) if (score >=60) cout << "D"; else cout << "F";

70 satisfy (2) and the first if statement of (3).
So the output is CD.
23 A Notice that $7!=5040>2017$.
So ai is <7 for any i from 1 to n.

We can use greedy algorithm, which pick the number k from 6 to 0 whenever the current sum $+\mathrm{k}!<=2017$, to find out the solution which n is minimized.

We can get $2 * 6!+4 * 5!+4 * 4!+1!=1440+480+96+1=2017$.

However, since $0!=1!=1$, we can replace $1!$ with $0!$. So the sum of ai $=2 * 6+4 * 5$ $+4 * 4+0=48$
24 C The $3^{\text {rd }}$ line only restrict that data has to be an array and the first element of data is a number. So it CAN store an array of 10 numbers.
25 D a.slice (x, y) extracts a section of array from $\mathrm{a}[\mathrm{x}]$ to $\mathrm{a}[\mathrm{y}]$. If y is omitted, the a.slice (x) extracts a section of array from $\mathrm{a}[\mathrm{x}]$ to end of array.
So a.slice(0) extract array a from a[0] to its end, which means make a copy of array.

Section B

Answer and Explanation		
A1	22	62
A2	$\mathrm{a}[\mathrm{j}+1]:=\mathrm{t}$;	$a[j+1]=t ;$
	j is the last index where $a[j]<=t$, so we should insert t in $a[j+1]$	
B	7	
C	$753 \mathrm{x}+84 /$ - OR $753 \times 84 /-+$	
D	1, 7, 10 (allow permutation)	
E	3	
F	st + ed - i	
	st + ed - i means the last $i^{\text {th }}$ element	
G	true	true or 1
	A character is always a palindrome	
H	s[st] = s[ed]	s [st] == s[ed]
	A string of two character is palindrome if both characters are equal	
I	($s[s t]=s[e d]$) and $f(s t+1$, ed - 1) (Accept reverse order)	$s[s t]==s[e d] \& \& f(s t+1$, ed - 1) (Accept reverse order)
	A palindrome is made by two equal character including another palindrome	
J		
K	(i + j - 2) mod $a+1$ (May replace a by 5)	$\begin{gathered} (i+j-2) \% \text { a }+1 \\ (\text { May replace a by } 5) \end{gathered}$
L	$x \bmod 10+x$ div $10 \bmod 10(o r x \bmod 100 \operatorname{div} 10)+\mathrm{x}$ div $100=8$	
	$x \% 10+x / 10 \% 10$ (or $\mathrm{x} \% 100 / 10)+\mathrm{x} / 100==8$	
	$x \% 10$ is the units digit. x div $10 \bmod 10$ is the tens digit. x div 100 is the hundreds digit.	
M	16	
	Count the number of pairs such that $a[j]>a[i]$ and $j<i$	

