Hong Kong Olympiad in Informatics 2015/16
Heat Event (Junior Group)
Official Solution

Statistics ( $\mathrm{N}=\mathbf{2 7 1}$ )
Full mark $=43$. Maximum $=36$. Median $=15$. Advance to Final $=19$ marks or above .

## Section A

## Q A Explanation

1 T Different kinds of coins will cause different changes in magnetic flux.
2 T The precedence of \&\& (and) is higher than \| (or), so the computer will evaluate the expression as Pascal: true or (false and false), C++: $1 \|(0 \& \& 0)$
3 F The maximum integer stored in char is 127 but the minimum integer is -128 instead of 0 , so there are 256 possibilities
$4 \quad$ F If the variable is not properly initialized or the program is doing something like accessing a random memory, the program may fail even there are no error on the first run
5 F According to Pythagoras theorem, $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$ where $\mathrm{a}, \mathrm{b}$ and c are the length of the side of a right-angled triangle. All primes are odd except for 2, by checking the parity, it is easy to prove that $\mathrm{a}, \mathrm{b}$ and c cannot be all primes.
$6 \quad \mathrm{D}$ The possible outputs are $-2,-1,0,1$ and 2
7 C Let the original value of $a, b$ and $c$ be $A, B$ and $C$ respectively.
After the first line, $a=B, b=B, c=C$;
After the second line, $a=B, b=C, c=C$
After the third line, $\mathrm{a}=\mathrm{B}, \mathrm{b}=\mathrm{C}, \mathrm{c}=\mathrm{B}$.
Therefore, (iii) must be correct
8 Cet's consider the value of $b-a$.
Initially, $\mathrm{b}-\mathrm{a}=2015$. And the value of $\mathrm{b}-\mathrm{a}$ will be decreased by 11 every loop. After 183 loops, $\mathrm{b}-\mathrm{a}$ becomes $2015-11 \times 183=2$, so the program will run for one more loop, so it runs for a total of 184 loops.
c is added by one in every loop, so the answer is 184
9 A The program can be improved by checking only $\mathrm{i}=2$.. sqrt(n)

| 10 | B | In order to minimize the no. of ways, the obstacle should be placed at these places: <br> S.... <br> .*. . <br> .... E <br> or <br> S.... <br> ...*. <br> .... E <br> * stand for an obstacle <br> And by simply counting, the no. of ways is 15 . |
| :---: | :---: | :---: |
| 11 | B | Let $F_{n}$ be the $n^{\text {th }}$ Fibonacci number, tri $[i][j]$ is actually equal to $F_{i-j+1}$ when $j \neq 0$ and equal to 1 when $\mathrm{j}=0$. <br> So tri[7][1] $=\mathrm{F}_{7}=13$ |
| 12 | B | Similar to Q. 11 $\operatorname{tri}[13][7]=\mathrm{F}_{7}=13$ |
| 13 | C | If all 42 numbers are the same, the no. of permutation is 1 , so ( i ) is possible. <br> If there are 41 numbers which are the same and 1 is different from them, the no. of permutation is 42 , so (iii) is possible. <br> If all 42 numbers are distinct, the no. of permutation is $1 \times 2 \times 3 \times \ldots \times 42$, so (iv) is possible. |
| 14 | A | If we store the temporary max as we iterating through the array, only 41 comparisons are needed |
| 15 | D | One way to think is that the computer's memory is a very large array. |
| 16 | C | Due to the last in first out property of a stack, the array will be reversed if it is pushed into and then popped from a stack. And if the array is pushed into and popped from a queue, it will have no effects on the array. So, if only one of P and Q is a stack, then the array will be reversed. |
| 17 | C | A bishop can visit any cell on the board wherever the sum of the coordinates are of the same parity. $24+12=36$ (even) so it can visit $(77,53)$ since $77+53=130$ (even), and $(58,12)$ since $58+12=70$ (even). The answer is (i) and (iii) only |
| 18 | A | Let $\triangle x$ be the difference in $x$-coordinate of the destination and the current position and $\triangle \mathrm{y}$ be that in y -coordinate. If both $\triangle \mathrm{x}$ and $\triangle \mathrm{y}$ are not zero, then one step can decrease both of them by 1 , so the overall step will be $\max (\triangle x, \triangle y)$. In this case, the answer is $\max (2552-37,3736-121)=\max (2515,3615)=3615$ |
| 19 | B | $\mathrm{x}[\mathrm{j}]$ is the no. of prime factors of j , the prime factors of 30 is 2,3 and 5 , the prime factor of 37 is 37 , the prime factors of 60 is 2,3 and 5 , the prime factor of 999 is 3 and 37. <br> Therefore $\mathrm{x}[30]+\mathrm{x}[37]+\mathrm{x}[60]+\mathrm{x}[999]=3+1+3+2=9$ |

20 D If the input is larger than 20, then the output will be greater than 12 , so A is not correct. If the input is larger than or equal to 10 , then the output will be smaller, so $B$ is not correct either.
C is incorrect, in fact, there are 6 positive integers $2,5,6,7,8$, and 9 which will produce the same output.
Therefore, the answer is D.
21 D This program's output is the index of the first maximum element.
For A, the output is 4 , for B , the output is 3 , for C , the output is 2 , for D , the output is 6.

22 D If (7, 7) is removed, one of the solutions looks like this:
AABCCDD
ABBECFD
GGHEEFF
IGHHJJK
IILLJKK
MMNLOPP
MNNOOP*
If $(3,6)$ is removed, one of the solutions looks like this:
AABCCDD
ABBECFD
GGHEEFF
GHHIJJK
LLIIJKK
LM*NOPP
MMNNOOP
If $(2,5)$ is removed, one of the solutions looks like this:
AABBCDD
EABCCDF
EEGGHFF
IIGJHHK
I*LJJKK
MLLNOOP
MMNNOPP


24 A Skylake is the codename used by Intel for a processor microarchitecture which was launched in August 2015.

25 B The best solution is to produce a number of villagers continuously until such amount and wait for 500 units of food. The best solution is explained below.

| Time | No. of villagers | No. of food before | No. of food after |
| :--- | :--- | :--- | :--- |
| 0 | $3+4=7$ | 200 | $200-200=0$ |
| $0+8=8$ | $7+1=8$ | $0+7 \times 8=56$ | $56-50=6$ |
| $8+6=14$ | $8+1=9$ | $6+8 \times 6=54$ | $54-50=4$ |
| $14+6=20$ | $9+1=10$ | $4+9 \times 6=58$ | $58-50=8$ |
| $20+5=25$ | $10+1=11$ | $8+10 \times 5=58$ | $58-50=8$ |
| $25+45=70$ | 11 | $8+11 \times 45=503$ | $503-0=503$ |

70 seconds is the fastest time.

Section B

| Answer and Explanation |  |  |
| :---: | :---: | :---: |
| A | write(sqrt(x):0:3) | printf("\%.3f", sqrt(x)) |
| B | $\mathrm{x}>1$ | $\mathrm{x}>1$ |
| C | $x \bmod 2=1$ | $\mathrm{x} \% 2==1$ |
|  | We need to multiply $x$ by 3 and then plus one when $x$ is an odd number |  |
| D | $x:=x \operatorname{div} 2$ | $\mathrm{x}=\mathrm{x} / 2$ |
|  | We need to divide x by 2 when x is an even number. |  |
| E | These 7 people are 1, 2, 3, 7, 8, 9, 10 |  |
| F | These 4 people are 1 (or 2), 4, 5, 8 (or 9). |  |
| G | 21 | 61 |
| H | if (a[l] = x) then | if (a[l] == x) |
|  | After finishing the binary search, $r$ will be the index of the last number less than $x$, and $l$ is equal to $r+1$, a[l] must not be less than $x$ and all the element after $a[1]$ will be greater than $a[1]$, so $a[l]=x$ if and only if $x$ is an element of $a$. |  |
| I1 | Primes and their powers (eg. 31, 32) <br> Suppose $\mathrm{x}=\mathrm{a} * \mathrm{~b}(\mathrm{a}<=\mathrm{b})$, the program will output a then $\mathrm{a} * \mathrm{~b}$ which is incorrect. If x is a prime or a prime power, then |  |
| I2 | All other numbers (eg. 33, 34) |  |
| J | abs $(a-x)+a b s(y-b)=3$ | abs ( $a-x$ ) + abs $(y-b)==3$ |
|  | abs $(a-x)+a b s(y-b)$ is the Manhattan distance of the center of two crosses. If two crosses are connected, the distance of the center is 3 . Since the two crosses do not overlap, so the difference in x and y coordinates of two crosses will not be 1 , therefore if their distance is 3 , their center will be in either the same row or the same column. |  |
| K | $\begin{gathered} (a b s(a-x)+a b s(y-b)=4) \text { and }(a<>x) \text { and } \\ (y<>b) \end{gathered}$ | $x)+a b s(y-b)==4 \quad \& \& a!=x \quad \& \& y!=b$ |
|  | If two crosses touch each other, the distance of the center is 4 . Since the two crosses do not overlap, so the difference in x and y coordinates of two crosses will not be 1 but may be zero. So we need to check if it is the case. |  |
| L | length(s) | strlen(s) |
| M | (s[i-1]=' ') and(s[i]<='Z') | s[i-1]==' '\&\&s[i]<='Z' |
|  | We first check whether the previous character is a space and then check whether the current character is a capital letter. |  |

