Hong Kong Olympiad in Informatics 2014/15
Heat Event (Senior Group)
Official Solution

Statistics ($\mathrm{N}=184$)

Full mark $=45$. Maximum $=41$. Median $=13$. Advance to Final $=15$ marks or above.

Section A

Q A Explanation

1 B Assume a is a free variable, b, c, d, e and f can all be expressed in terms of a. $d=10-a$ then $10-a+c=5, c=a-5$. Then $a-5+e=-3, e=2-a$.
Then $b+2-a=1, b=a-1$. Then $a-1+f=2, f=3-a$
Therefore, $a+f=a+3-a=3$. $b+d=a-1+10-a=9$.
However, $d+e=10-a+2-a=12-2 a$, which is not a constant.
2 B Precision error causes the first condition to return false.
However, the sign of a floating point number is stored separately.
Therefore, summing a floating point number and its negation always give 0 .
3 B We can choose $1,6,8,9$ for the first digit and $0,1,6,8,9$ for the subsequent digits. The answer is a multiple of 10 so its units digit is 0 .
$4 \quad \mathrm{C}$ The program tried to find the maximum sum of two consecutive numbers. But since all the sums are negative, the initial value of $\max (=0)$ is output.
5 C For A, the overflow result of $2000000000+999999999$ is a negative number. All other sums are negative. For B, the sums are very small.
For C, the overflow result of $-2000000000+-1000000000$ is a large positive number. For D, the only positive sum is 105000 which is very small.
6 A First, two consecutive characters cannot be the same. The first and the third, the second and the fourth characters cannot be the same. Let the string be $s_{1} s_{2} s_{3} s_{4}$ s_{1} can be arbitrarily chosen (26 choices). $s_{2} \neq s_{1}$ (25 choices).
$s_{3} \neq s_{1}$ and $s_{3} \neq s_{2}$ (24 choices). $s_{4} \neq s_{2}$ and $s_{4} \neq s_{3}$ (24 choices)
Answer $=26 \times 25 \times 24 \times 24=374400$
7 C Compressed files cannot be compressed again effectively.
8 A The parent of a node is N/2 (ignore remainder). Keep dividing 2338 and 2015 by 2, we get $2338 \rightarrow 1169 \rightarrow 584 \rightarrow 292 \rightarrow 146 \rightarrow 73 \rightarrow 36 \rightarrow 18 \rightarrow 9 \rightarrow 4 \rightarrow 2 \rightarrow 1$ $2015 \rightarrow 1007 \rightarrow 503 \rightarrow 251 \rightarrow 125 \rightarrow 62 \rightarrow 31 \rightarrow 15 \rightarrow 7 \rightarrow 3 \rightarrow 1$. The LCA is 1 .

[^0]| Q | A | Explanation |
| :---: | :---: | :---: |
| 10 | | $\begin{aligned} & \text { Initially, } \mathrm{t}=3 \\ & \mathrm{i}=1: \mathrm{t}=6^{\wedge} 2, \text { which gives } 4 . \\ & \mathrm{i}=2: \mathrm{t}=8^{\wedge} 9 \text {, which gives } 1 . \\ & \mathrm{i}=3: \mathrm{t}=2^{\wedge} 5 \text {, which gives } 7 . \end{aligned}$ |
| 11 | D | The program computes the sum of digits of all numbers from 1 to 2003. Consider 1 to 1999 only. In the units, tens and hundreds digits, each number 0-9 appeared in each digit 200 times. In the thousands digit, 1 appeared 1000 times. Therefore the answer is $45 \times 200 \times 3+1000+2+3+4+5=28014$ |
| 12 | C | Both players do not want to lose the whole game, so they need to be the first player in round N . To be the first player in round N , they need to lose in round $\mathrm{N}-1$. However we do not know whether there is a losing strategy, so the answer is C. |
| 13 | D | Alice will choose to keep losing so that she can be the first player again and again. In the last round, Alice can use the winning strategy to win the whole game. |
| 14 | A | The loop is repeated 50 times.
 The 2^{0} digit repeats in this pattern: $0 \rightarrow 1 \rightarrow 1 \rightarrow 0 \rightarrow \cdots$
 The 2^{1} digit repeats in this pattern: $0 \rightarrow 0 \rightarrow 1 \rightarrow 0 \rightarrow \cdots$
 Since $50 \equiv 2(\bmod 4)$, the answer modulo 4 should be 3 . |
| 15 | C | If N has a prime factor k of any positive degree, the program will only k output once. For example when $\mathrm{n}=8$, the program will output $2 * 4$ instead of $2 * 2 * 2$. $15=3 \times 5,16=2 \times 2 \times 2 \times 2,17=17,18=2 \times 3 \times 3$.
 Only 16 and 18 have a prime factor of degree greater than 1 . |
| 16 | A | We try to place frequently accessed documents as near the end as possible.
 By placing document 1 and 5 at the ends, and document 4 in the middle. The minimum energy consumption is achieved. $\text { Answer }=5+6+2 \times 4+2 \times 2+3 \times 1=26$ |
| 17 | B | In fact, we only need to try to count once for vertically and once horizontally. The counting should be symmetrical. We are looking for seats that have number 3 in both countings and their reflections. There are only 2 such seats (Row $1 \& 4$, Column 3). |
| 18 | C | We are interested in tmp modulo 5.
 Initially, tmp $\equiv 0(\bmod 5)$
 After first loop, tmp $\equiv 1(\bmod 5)$
 After second loop, $\mathrm{tmp} \equiv 4(\bmod 5)$
 After third loop, tmp $\equiv 0(\bmod 5)$
 After forth loop, $\mathrm{tmp} \equiv 4(\bmod 5)$
 After fifth loop, tmp $\equiv 0(\bmod 5)$
 You can see that tmp is a multiple of 5 two times per cycle.
 The loop is repeated 99 times so the answer is $19 \times 2+1$. |

Q A Explanation

19 A Let's examine a[tx][ty] + tx modulo 3.

txlty	0	1	2	3	4
0	$11+0: 2$	$3+0: 0$	$7+0: 1$	$15+0: 0$	$1+0: 1$
1	$16+1: 2$	$62+1: 0$	$53+1: 0$	$44+1: 0$	$37+1: 2$
2	$10+2: 0$	$12+2: 2$	$11+2: 1$	$31+2: 0$	$22+2: 0$

Examine also a[tx][ty] + ty modulo 5

tx\ty	0	1	2	3	4
0	$11+0: 1$	$3+1: 4$	$7+2: 4$	$15+3: 3$	$1+4: 0$
1	$16+0: 1$	$62+1: 3$	$53+2: 0$	$44+3: 2$	$37+4: 1$
2	$10+0: 0$	$12+1: 3$	$11+2: 3$	$31+3: 4$	$22+4: 1$

$(t x, t y)=(1,0) \rightarrow(2,1) \rightarrow(2,3) \rightarrow(0,4) \rightarrow(1,0)$
The cycle length is 4 . The loop is repeated 127 times so it will ends at $(0,4)$
$20 \quad \mathrm{D} \quad$ Let x be the answer (expected number of flips)
$x=(H)(0.5)+(T)(0.5)$
$x=(1+(H T)(0.5)+(H H)(0.5))(0.5)+(T)(0.5)$
$x=(1+(1+x)(0.5)+(1)(0.5))(0.5)+(1+x)(0.5)$
$x=(1+0.5+0.5 x+0.5)(0.5)+(0.5+0.5 x)$
$x=1.5+0.75 x$
$x=6$
21 A Overflow may occur for i, ii, iv. Examples are
i: $\mathrm{a}=2000000000, \mathrm{~b}=-1000000000$
ii: $\mathrm{a}=2147483647, \mathrm{~b}=0$
iv: $\mathrm{a}=0, \mathrm{~b}=-2147483648$
In these examples, $\mathrm{a}>\mathrm{b}$ is true but the expression returns false
22 A For the jungler, there are 5 choices. For the top laner, there are 4 choices remaining.
For the middle laner, there are 3 choices remaining.
Total number of combinations $=5 \times 4 \times 3=60$.
23 C Using the result obtained previously, there are now 4 choices for the role that has 2 players (instead of being restricted to jungler). Therefore the answer is $60 \times 4=240$.
24 C The program performs the following for each digit:
While the digit is not zero, deduct the digit by one, and add it to count if it is not 4 .
$=(6+5+3+2+1)+(3+2+1)+1+(8+7+6+5+3+2+1)+(5+3+2+1)+(2+1)+(3+2+1)$
$=76$
25 C The program rotates the array contents.
After the first rotation, $a=24351$. After the second rotation, $a=43512$. The loop repeats 5102 times. $5102 \equiv 2(\bmod 5)$

Section B

[^0]: 9 B Let's try to put an x in the empty on the first row. The chessboard would become xxoo
 ooxx
 xxoo
 ooxx
 Let's also try to put an o instead. The chessboard would be similar to the given sample. In both ways the chessboard is uniquely determined. Therefore the answer is 2 .

