Hong Kong Olympiad in Informatics 2014/15 Heat Event (Senior Group) Official Solution

Statistics (N = 184)

Full mark = 45. Maximum = 41. Median = 13. Advance to Final = 15 marks or above.

Section A					
Q A		Explanation			
1	В	Assume a is a free variable, b , c , d , e and f can all be expressed in terms of a .			
		d = 10 - a then $10 - a + c = 5$, $c = a - 5$. Then $a - 5 + e = -3$, $e = 2 - a$.			
		Then $b + 2 - a = 1$, $b = a - 1$. Then $a - 1 + f = 2$, $f = 3 - a$			
		Therefore, $a + f = a + 3 - a = 3$. $b + d = a - 1 + 10 - a = 9$.			
		However, $d + e = 10 - a + 2 - a = 12 - 2a$, which is not a constant.			
2	В	Precision error causes the first condition to return false.			
		However, the sign of a floating point number is stored separately.			
		Therefore, summing a floating point number and its negation always give 0.			
3	В	We can choose 1, 6, 8, 9 for the first digit and 0, 1, 6, 8, 9 for the subsequent digits.			
		The answer is a multiple of 10 so its units digit is 0.			
4	С	The program tried to find the maximum sum of two consecutive numbers. But since all			
		the sums are negative, the initial value of max (=0) is output.			
5	С	For A, the overflow result of 2000000000 + 9999999999 is a negative number. All oth			
		sums are negative. For B, the sums are very small.			
		For C, the overflow result of -2000000000 + -100000000000000000000000000			
		For D, the only positive sum is 105000 which is very small.			
6	А	First, two consecutive characters cannot be the same. The first and the third, the second			
		and the fourth characters cannot be the same. Let the string be $s_1s_2s_3s_4$			
		s_1 can be arbitrarily chosen (26 choices). $s_2 \neq s_1$ (25 choices).			
		$s_3 \neq s_1$ and $s_3 \neq s_2$ (24 choices). $s_4 \neq s_2$ and $s_4 \neq s_3$ (24 choices)			
		Answer = $26 \times 25 \times 24 \times 24 = 374400$			
7	С	Compressed files cannot be compressed again effectively.			
8	А	The parent of a node is N / 2 (ignore remainder). Keep dividing 2338 and 2015 by 2,			
		we get $2338 \rightarrow 1169 \rightarrow 584 \rightarrow 292 \rightarrow 146 \rightarrow 73 \rightarrow 36 \rightarrow 18 \rightarrow 9 \rightarrow 4 \rightarrow 2 \rightarrow 1$			
		$2015 \rightarrow 1007 \rightarrow 503 \rightarrow 251 \rightarrow 125 \rightarrow 62 \rightarrow 31 \rightarrow 15 \rightarrow 7 \rightarrow 3 \rightarrow 1$. The LCA is 1.			
9	В	Let's try to put an x in the empty on the first row. The chessboard would become xxoo ooxx xxoo ooxx			
		Let's also try to put an o instead. The chessboard would be similar to the given sample.			
		In both ways the chessboard is uniquely determined. Therefore the answer is 2.			

Q	Α	Explanation				
10	D	Initially, $t = 3$				
		$i = 1: t = 6 ^ 2$, which gives 4.				
		$i = 2: t = 8 ^ 9$, which gives 1.				
		$i = 3: t = 2^{5}$, which gives 7.				
11 D The program co		The program computes the sum of digits of all numbers from 1 to 2003.				
		Consider 1 to 1999 only. In the units, tens and hundreds digits, each number 0-9				
		appeared in each digit 200 times. In the thousands digit, 1 appeared 1000 times.				
		Therefore the answer is $45 \times 200 \times 3 + 1000 + 2 + 3 + 4 + 5 = 28014$				
12 C Both players do not want to lose the whole game, so th		Both players do not want to lose the whole game, so they need to be the first player in				
		round N. To be the first player in round N, they need to lose in round N-1. However we				
		do not know whether there is a losing strategy, so the answer is C.				
		Alice will choose to keep losing so that she can be the first player again and again. In				
		the last round, Alice can use the winning strategy to win the whole game.				
14	А	The loop is repeated 50 times.				
		The 2^0 digit repeats in this pattern: $0 \rightarrow 1 \rightarrow 1 \rightarrow 0 \rightarrow \cdots$				
		The 2^1 digit repeats in this pattern: $0 \rightarrow 0 \rightarrow 1 \rightarrow 0 \rightarrow \cdots$				
		Since $50 \equiv 2 \pmod{4}$, the answer modulo 4 should be 3.				
15	С	If N has a prime factor k of any positive degree, the program will only k output once.				
		For example when $n = 8$, the program will output $2 * 4$ instead of $2 * 2 * 2$.				
		$15 = 3 \times 5, \ 16 = 2 \times 2 \times 2 \times 2, \ 17 = 17,18 = 2 \times 3 \times 3.$				
		Only 16 and 18 have a prime factor of degree greater than 1.				
16 A		We try to place frequently accessed documents as near the end as possible.				
		By placing document 1 and 5 at the ends, and document 4 in the middle. The minimum				
		energy consumption is achieved.				
		Answer = $5 + 6 + 2 \times 4 + 2 \times 2 + 3 \times 1 = 26$				
17	В	In fact, we only need to try to count once for vertically and once horizontally. The				
		counting should be symmetrical. We are looking for seats that have number 3 in both				
		countings and their reflections. There are only 2 such seats (Row 1 & 4, Column 3).				
18	С	We are interested in tmp modulo 5.				
		Initially, $tmp \equiv 0 \pmod{5}$				
		After first loop, tmp $\equiv 1 \pmod{5}$				
		After second loop, $tmp \equiv 4 \pmod{5}$				
		After third loop, $tmp \equiv 0 \pmod{5}$				
		After forth loop, $tmp \equiv 4 \pmod{5}$				
		After fifth loop, tmp $\equiv 0 \pmod{5}$				
		You can see that tmp is a multiple of 5 two times per cycle.				
		The loop is repeated 99 times so the answer is $19 \times 2 + 1$.				

Q	Α	Explanation					
19	А	Let's examine a[tx][ty] + tx modulo 3.					
		tx\ty	0	1	2	3	4
		0	11+0:2	3+0:0	7+0:1	15+0:0	1+0:1
		1	16+1:2	62+1:0	53+1:0	44+1:0	37+1:2
		2	10+2:0	12+2:2	11+2:1	31+2:0	22+2:0
Examine also a[tx][ty] + ty modulo 5							
		tx\ty	0	1	2	3	4
		0	11+0:1	3+1:4	7+2:4	15+3:3	1+4:0
		1	16+0:1	62+1:3	53+2:0	44+3:2	37+4: 1
		2	10+0:0	12+1:3	11+2:3	31+3:4	22+4:1
			(tx,ty) =	$= (1,0) \rightarrow (2,2)$	$1) \rightarrow (2,3) \rightarrow 0$	$(0,4) \rightarrow (1,0)$	
		The cycle length is 4. The loop is repeated 127 times so it will ends at $(0, 4)$					
20	D	Let <i>x</i> be the answer (expected number of flips)					
		x = (H)(0.5)					
	x = (1 + (HT)(0.5) + (HH)(0.5))(0.5) + (T)(0.5)						
		x = (1 + (1 + x)(0.5) + (1)(0.5))(0.5) + (1 + x)(0.5)					
		x = (1 + 0.5 + 0.5x + 0.5)(0.5) + (0.5 + 0.5x)					
		x = 1.5 + 0.7	75 <i>x</i>				
	•	x = 6	<u>с · · ·</u>				
21	А	Overflow may occur for i, ii, iv. Examples are					
		i: a = 2000000000, b = -1000000000 ii: a = 2147483647, b = 0					
		iv: $a = 0, b =$	*				
				s true but the	expression retu	rns false	
22	А		.		ne top laner, the		es remaining
	11	5 0	le laner, there		•		es remaining.
			of combination		e		
23	С				e are now 4 ch	oices for the ro	ble that has 2
		e	-	•			$60 \times 4 = 240.$
24	С	The program	performs the f	ollowing for e	ach digit:		
		While the dig	it is not zero, o	deduct the dig	it by one, and a	add it to count	if it is not 4.
		= (6+5+3+2+	1) + (3+2+1) -	+ 1 + (8+7+6+	5+3+2+1) + (5	5+3+2+1) + (2-	+1) + (3+2+1)
		= 76					
25	С	The program	rotates the arra	ay contents.			
		After the first	rotation, a =	24351	. After the seco	ond rotation, a	= 4 3 5 1 2.
		The loop repe	eats 5102 times	s. $5102 \equiv 2$ ((mod 5)		

Section B

	Answer and H	Explanation				
Α						
	The required result is A AND B, which is equivalent to NOT(A NAND B)					
В	((AQB)Q((AQA)Q(BQB)))					
	The required result is $A = B$, which is equivalent to (A AND B) OR (NOT A AND NOT B)					
	= NOT[NOT(A AND B) AND NOT(NOTA AND NOT B)] (DeMorgan's Theorem)					
	= (A NAND B) NAND (NOT A NAND NOT B)					
С	C (i=j)or(i=8-j) i==j i==8-j					
	The diagonals are i=j and i=8-j					
D	i*j mod 10=0	i*j%10==0				
	There is a * at $j=5$ when $i=2, 4, 6$ and 8. There are *s at $j=2, 4, 6, 8$ when $i=5$. Also, the					
	border * happens when i or j is 0 or 10. Therefore, the formula is related to even numbers					
	5 and 10. The smallest such number is 10.					
Е	1, 2, 5, 6, 8, 9					
F	(r1+c1+r2+c2)mod 2=1	(r1+c1+r2+c2)%2==1				
	Note: ==1 is not acceptable if minus is used. !=0 can be used instead.					
	This checks whether the two bishops are placed on the same color (black / white).					
	If the colors are the same, there exists a cell (of same color) that can be attacked by both					
	bishops. If the colors are different, there is no such cell since bishops cannot move to a cell of					
	different color.					
G	f(2,0);					
Η	f(5,1);					
	Notice that the first number printed is x. Therefore we only need to determine parameter y.					
	y is stored into tmp which in turn is stored into x . This value is printed in the next iteration.					
	Therefore the parameter y should be the second digit to be printed.					
	Actually, array a is a "sum" bidirectional linked list: the left summand stores the index of the					
	previous cell and the right summand stores the index of the next cell. To access the next					
Ŧ	element in the linked list, the index of previous	-				
Ι	100-i div 4+i mod 4*4	100-i/4+i%4*4				
	Alternative answer: 100-i div 4*17+i*4, 100-i/4*17+i*4					
	A character is 4 greater than the character on its left, so there should be a $i*4$ term.					
	Let's add a constant to make the first line is correct, we would have 100+i*4.					
	The output becomes dhlp,tx??,?????????????????????????????????					
т	So we add the term $-i/4*17$.					
J	0 Exprime the second division $n/d = (n/d) = (n/d) = n(n/d)$					
	For integer division $n/d == -((-n)/d) == -(n/(-d)), n\%d == -((-n)\%d) == n\%(-d)$					