Hong Kong Olympiad in Informatics 2014 Heat Event (Senior Group) Official Solution

Statistics (N = 172)

Full mark = 40. Maximum = 40. Median = 14.25. Advance to Final = 16.5 marks or above.

Section A

Q	A	Explanation			
1	D	The ASCII code of "A", "a", "", "0" are 65, 97, 32, 48 respectively.			
2	/	Cancelled due to different choices in English and Chinese versions.			
		The correct answer is i only. There are N colors of socks, to guarantee that we take			
		socks of the same color, we need to take $N(K-1) + 1$ socks.			
3	B Draw a flowchart to understand what instructions are actually executed.				
		In the first program, each loop contains 1 comparison and 2 assignments.			
		In the second program, each loop contains 2 comparisons and 4 assignments			
		(but i is increased by 2 instead of 1). The execution time should be doubled.			
4	/	Cancelled. Correct answer would be B if the graph is planar which we did not specify.			
5	C The 1st to 56th letters form a 4-wonderful sentence, so the 55th letter is 'B'.				
		The 57th to 63rd letters form a 5-wonderlul word, next comes 'ABAABBA' so the			
		70th letter is 'A'			
6	Simplifying a bit, we have 12 water = 49 pork, 26 pork = 36 rice = 17 cabbage				
		Now, let's convert everything to pork.			
		A: 101 rice = 101 / 36 * 26 = 72.9 pork			
		B: 48 cabbage = 48 / 27 * 26 = 73.4 pork			
		C: 74 pork			
		D: $18 \text{ water} = 18 / 12 * 49 = 73.5 \text{ pork}$			
7	C	f(2, 2) = f(1, 2) + f(2, 1) = 1 + 1 = 2			
		f(3, 2) = f(2, 2) + f(3, 1) = 2 + 1 = 3			
		f(2, 3) = f(1, 3) + f(2, 2) = 1 + 2 = 3			
		f(3, 3) = f(2, 3) + f(3, 2) = 3 + 3 = 6			
		So, $c = f(2, 3) + f(3, 3) = 3 + 6 = 9$			
8	A	Binary search can only be applied to a sorted array.			
9	A	Candidate prime numbers are {5, 7, 11, 13, 17, 19}, 6 elements.			
		Number of ways = $6C3 = 20$			
10	D	The symbol represents the logical operator "OR". OR is associative, meaning that the			
		expression can become ((NOT U OR U) OR V) AND V,			
		which is (TRUE OR V) AND V, which is TRUE AND V, which is V.			

Q	A	Explanation			
11	D	We can draw a graph like this:			
		Tryndamere \leftrightarrow Taric \leftrightarrow Xin Zhao \leftrightarrow Jarvan IV			
		Master Yi ↔ Wukong			
		Lee Sin ↔ Garen			
		Number of pairs of friends = $4C2 + 1 + 1 = 6 + 2 = 8$			
12	C	The $a[k+1] = j$ at the end of the loop body inserts the new number in the correct			
		position, which shows that the program implements insertion sort.			
13	D	Due to precision error, the loop would not stop.			
14	D A and B are false: The condition $(x < 100)$ and $(x \ge 100)$ covers all values of				
		including both integers and real numbers. So the program will never output -1.			
		C is false: If x is negative, the program output '0'. A floating point variable can store			
		small integers without losing information.			
15	В	12 = 1100(2), 4 = 0100(2), 12 & 4 = 0100(2).			
		$10 = 01010(2), 21 = 10101(2), 10 \mid 21 = 11111(2)$			
		Hint: If the operands are positive, the result of & would not be larger than the smaller			
		operand. The result of would not be smaller than the larger operand.			
16	В	Only ordinal data types such as int, char, bool can be used.			
		Hint: floating point operations are not performed in the ALU.			
17	A	(i) is wrong because David didn't guarantee that his students will pass the test. Assume			
		A, B class each has 2 students respectively, and all students got same amount of			
		cookies. This example disproves statement (ii), (iii) and (iv).			
18	/	Cancelled. None of the answers are correct. The correct answer is 96.			
		Let $f(x)$ = number of ways to form \$x\$. We have $f(0) = 1$ and $f(x) = 0$ for $f(x) = 0$ for $f(x) = 0$.			
		f(x) = f(x - 0.5) + f(x - 1) + f(x - 2) for $x > 0$. Our answer is $f(4.5)$			
19	В	Let's walk inversely from destination to the origin!			
		A: 17/9 -> 8/9 -> 8/1 -> 7/1 -> 6/1 -> 5/1 -> 4/1 X			
		B: 17/10 -> 7/10 -> 7/3 -> 4/3 -> 1/3 -> 1/2 -> 1/1 0			
		C: 13/15 -> 13/2 -> 11/2 -> 9/2 -> 7/2 -> 5/2 -> 3/2 X			
		D: 11/8 -> 3/8 -> 3/5 -> 3/2 -> 1/2 -> 1/1 -> ?/? X			
20	A	Let's track the value of $j: 1 -> 0 -> 2 -> 3 -> 7 -> 4 -> 5 -> 8$			
		Finally, the output is a [8], which is 2			
21	В	Let's track the value of $j: 0 -> 1 -> 7 -> 8 -> 4 -> 0 ->$			
		The cycle length is 5 and the loop is executed 10008 times. $10008 \equiv 3 \pmod{5}$			
22	A	Answer = $2 \times 3 \times 2 \times 1 \times 3 \times 1 \times 2 \times 3 \times 2 \times 1 \times 2 = 864$			
23	A	Let's say Compiler is able to compile C programs, and Source A (written in C) is the			
		source code of the C compiler, and Source B is the source code of the Pascal compiler			
		(written in C). Neither Source A nor Source B (both in C) can be compiled by the			
		Pascal compiler.			

Q A Explanation

A i. is obviously true.

ii is not always true. Compiler C may take a lot of time trying to optimize the program. iii. is not always true. Compiler A produces programs which run slower, but it may take shorter time to compile. Compiler C2 produces programs which run faster, but it may take longer time to compile.

25 A The output number is smallest when it has the fewest digits.

Number of digits for

A:
$$2 * 3 * (4 + 1) = 30$$

B:
$$3 * 4 * (2 + 1) = 36$$

$$C: 4 * 2 * (3 + 1) = 32$$

D:
$$4 * 3 * (2 + 1) = 36$$

Section B

	Answer and Explanation					
A	A: 76545336 B: A43D					
В	There is a very easy way to convert a number between binary, octal and hexadecimal.					
	For A, first convert the hexadecimal number to binary. $0 = 0000$, $F = 1111$ and so on.					
	The result is 1111,1010,1100,1010,1101,1110. Rearrange it into groups of 3 bits (from LSB),					
	which gives 111,110,101,100,101,011,011,110 and convert each group to decimal.					
C	x mod 200+200	x%200+200				
	Alternative answer: 200 - (- x%200)					
	Notice that we are working with $x \le 0$. Therefore x % 100 would give -199 to 0.					
	Adding 200 to that result would give 1 to 200 (which is the correct final value)					
D	324					
	The first circle we can put any of the four numbers. The other circles we can put any of the					
	three numbers different from the previous one. Number of arrangements = 4×3^4					
Е	84					
	First, assign an arbitrary color X to the top left circle. (4 choices)					
	Then, assign a color Y different to the previous one to the bottom left circle. (3 choices)					
	Now for the top left circle we put color Z. If $Z = Y$, the bottom right circle have 3 choices.					
	If $Z \neq Y$, Z itself have 2 choices and the bottom right circle have 2 choices.					
	$Answer = 4 \times 3 \times (3 + 2 \times 2) = 84$					
F	Cancelled. The given number 2232 should be 2332 instead. Contestants who answered 2232×10^{-2}					
	x 7 = 15624 all ranked high enough that they are not affected by the cancellation.					
G	Logic					
Н	21	59				
I	halt end	return 0;}				
	Originally, when n is a triangular number, both lines will be printed.					
	We need to stop the program in the body of the if statement.					
J	swap(p,p+1)					
K1	p>0					
K2	p:=p-1	p=p-1				
L	p:=p+1	p=p+1				
	Alternative answer for J2: p=0					
	The program implements insertion sort.					
	A new element will be swapped into correct place before moving on to the next element.					
M	><>.					
N	<					
О	>					
	The first > gets overwritten by the < due to the execution order.					