Hong Kong Olympiad in Informatics 2014
Heat Event (Senior Group)
Official Solution

Statistics ($\mathrm{N}=172$)
Full mark $=40$. Maximum $=40$. Median $=14.25$. Advance to Final $=16.5$ marks or above.

Section A

Q	A	Explanation
1	D	The ASCII code of "A", "a", " ", "0" are 65, 97, 32, 48 respectively.
2	/	Cancelled due to different choices in English and Chinese versions. The correct answer is i only. There are N colors of socks, to guarantee that we take K socks of the same color, we need to take $N(K-1)+1$ socks.
3	B	Draw a flowchart to understand what instructions are actually executed. In the first program, each loop contains 1 comparison and 2 assignments. In the second program, each loop contains 2 comparisons and 4 assignments (but i is increased by 2 instead of 1). The execution time should be doubled.
4	1	Cancelled. Correct answer would be B if the graph is planar which we did not specify.
5	C	The 1st to 56 th letters form a 4 -wonderful sentence, so the 55 th letter is ' B '. The 57th to 63rd letters form a 5 -wonderlul word, next comes 'ABAABBA' so the 70 th letter is ' A '
6	C	Simplifying a bit, we have 12 water $=49$ pork, 26 pork $=36$ rice $=17$ cabbage Now, let's convert everything to pork. A: 101 rice $=101 / 36 * 26=72.9$ pork B: 48 cabbage $=48 / 27 * 26=73.4$ pork C: 74 pork D: 18 water $=18 / 12 * 49=73.5$ pork
7	C	$\begin{aligned} & \mathrm{f}(2,2)=\mathrm{f}(1,2)+\mathrm{f}(2,1)=1+1=2 \\ & \mathrm{f}(3,2)=\mathrm{f}(2,2)+\mathrm{f}(3,1)=2+1=3 \\ & \mathrm{f}(2,3)=\mathrm{f}(1,3)+\mathrm{f}(2,2)=1+2=3 \\ & \mathrm{f}(3,3)=\mathrm{f}(2,3)+\mathrm{f}(3,2)=3+3=6 \\ & \text { So, } \mathrm{c}=\mathrm{f}(2,3)+\mathrm{f}(3,3)=3+6=9 \end{aligned}$
8	A	Binary search can only be applied to a sorted array.
9	A	Candidate prime numbers are $\{5,7,11,13,17,19\}, 6$ elements. Number of ways $=6 \mathrm{C} 3=20$
10		The symbol represents the logical operator "OR". OR is associative, meaning that the expression can become ((NOT U OR U) OR V) AND V, which is (TRUE OR V) AND V, which is TRUE AND V, which is V.

Q	A	Explanation	
11	D	We can draw a graph like this: Tryndamere \leftrightarrow Taric \leftrightarrow Xin Zhao \leftrightarrow Jarvan IV Master $\mathrm{Yi} \leftrightarrow$ Wukong Lee Sin \leftrightarrow Garen Number of pairs of friends $=4 \mathrm{C} 2+1+1=6+2=8$	
12	C	The $a[k+1]=j$ at the end of the loop body inserts the new number in the correct position, which shows that the program implements insertion sort.	
13	D	Due to precision error, the loop would not stop.	
14	D	A and B are false: The condition $(x<100)$ and $(x \geq 100)$ covers all values of x, including both integers and real numbers. So the program will never output -1 . C is false: If x is negative, the program output ' 0 '. A floating point variable can store small integers without losing information.	
15	B	$\begin{aligned} & 12=1100(2), 4=0100(2), 12 \& 4=0100(2) \\ & 10=01010(2), 21=10101(2), 10 \mid 21=11111(2) \end{aligned}$ Hint: If the operands are positive, the result of \& would not be larger than the smaller operand. The result of \\| would not be smaller than the larger operand.	
16	B	Only ordinal data types such as int, char, bool can be used. Hint: floating point operations are not performed in the ALU.	
17	A	(i) is wrong because David didn't guarantee that his students will pass the test. Assume A, B class each has 2 students respectively, and all students got same amount of cookies. This example disproves statement (ii), (iii) and (iv).	
18	1	Cancelled. None of the answers are correct. The correct answer is 96 . Let $f(x)=$ number of ways to form $\$ x$. We have $f(0)=1$ and $(x)=0$ for $x<0$. $f(x)=f(x-0.5)+f(x-1)+f(x-2)$ for $x>0$. Our answer is $f(4.5)$	
19	B	Let's walk inversely from destination to the origin!	
20	A	Let's track the value of j: 1 -> 0 -> 2 -> 3 -> 7 -> 4 -> 5 -> 8 Finally, the output is a [8], which is 2	
21	B	Let's track the value of j: 0 -> 1 -> 7 -> 8 -> 4 -> 0 -> ... The cycle length is 5 and the loop is executed 10008 times. $10008 \equiv 3(\bmod 5)$	
22	A	Answer $=2 \times 3 \times 2 \times 1 \times 3 \times 1 \times 2 \times 3 \times 2 \times 1 \times 2=864$	
23	A	Let's say Compiler is able to compile C programs, and Source A (written in C) is the source code of the C compiler, and Source B is the source code of the Pascal compiler (written in C). Neither Source A nor Source B (both in C) can be compiled by the Pascal compiler.	

Q A Explanation

24 A i. is obviously true. ii is not always true. Compiler C may take a lot of time trying to optimize the program. iii. is not always true. Compiler A produces programs which run slower, but it may take shorter time to compile. Compiler C2 produces programs which run faster, but it may take longer time to compile.
25 A The output number is smallest when it has the fewest digits.
Number of digits for
A: $2 * 3 *(4+1)=30$
B: $3 * 4 *(2+1)=36$
C: 4 * 2 * $(3+1)=32$
D: $4 * 3 *(2+1)=36$

Section B

