Hong Kong Olympiad in Informatics 2013
Heat Event (Senior Group)
Official Solution

Statistics ($\mathrm{N}=185$)
Full mark $=51$. Maximum $=42$. Median $=16$. Advance to Final $=18$ marks or above.

Section A

Q	A	Explanation
1	A	There are 8 possible configuration of the ring.
		Which are: (O represents black bend while X represents black bend)
		OOOOO
		XXXXX
	OOOOX	
	XXXXO	
	OOXOX	
		XXOXO
		XXXOO
	OOOXX	

2 B It takes a long time to search for an element in specific in linked list but not sorted array. However insertion of elements in linked list takes only a little time ($\mathrm{N} / 2$ times faster than sorted array, where N is the number of element)
Notice that linked list request additional memory for the pointers, so actually linked list takes more memory than a sorted array in case the number of element is known.
3 B If Option A is correct, Option C must also be correct. If Option B is wrong, Option A must be correct (which is impossible), therefore only Option B is correct.
4 D Memory size of each data type: int $=4$ bytes, char $=1$ byte.
Therefore node $=20 * 4+40=120$ bytes each.
Answer $=1000 * 4+250 * 10+100 * 120=18500$
$5 \quad \mathrm{C} \quad \mathrm{x}=727650 \rightarrow 363825 \rightarrow 121275 \rightarrow 24255 \rightarrow 3465 \rightarrow 385 \rightarrow 35$
6 A In situation ii, there exists a winning strategy for the first player if the first player place an ' O ' at the center for the next move.
$7 \quad \mathrm{C} \quad$ Let the positions of A, B, C and D be a, b, c and d respectively.
We have $c-a \leq 5, d-b \leq 9$ and $c-b \geq 3$, which means $b-c \leq-3$.
Distance between D and A:

$$
d-a=d-b+b-c+c-a=(d-b)+(b-c)+(c-a)
$$

To maximize $d-a$, we maximize $d-b, b-c$ and $c-a$.

$$
d-a \leq 5+9+(-3)=11
$$

Q A Explanation

8 D random(x) returns an integer between 0 and $x-1$
-2012 to 0 is obtainable by assuming the first random(random(1011)*2) to be 0 .
There are 2013 integers.
Integers $2,4,6 \ldots, 2020$ are obtainable by assuming the second random to be 0 . There are 1009 other integers.
Integers $1,3,5 \ldots, 2019$ are obtainable by assuming the second random to be 1 . There are 1009 other integers
Thus, total possible integers generated $=2013+1009+1009=4031$
9 B Assuming we are trying to make Feb 1 larger than Jan 31, $2 k+1>1 k+31$ so $k>30$
You can try to prove that for other months $k>30$ is sufficient.
10 D Here, $\mathrm{k}=\mathrm{k} * \mathrm{k}$; would be executed if and only if $\mathrm{i}=\mathrm{k}$ $\mathrm{k}=2 \rightarrow 4 \rightarrow 16 \rightarrow 256 \rightarrow 65536$ (as $256<2013$)
11 C The program implements bubble sort.
Array a after the fourth iteration of i :
$4,7,1,6,2,8,3,5 \rightarrow 4,1,6,2,7,3,5,8 \rightarrow 1,4,2,6,3,5,7,8 \rightarrow 1,2,4,3,5,6,7,8 \rightarrow 1,2,3,4,5,6,7,8$
Question is asking for ans $=a[j]=a[7-i]=a[7-3]=a[4]=5$
$12 \mathrm{C} \quad$ Let x and y be the values of wine X and wine Y (in thousands).

$$
\left\{\begin{array} { l l }
{ \frac { 1 } { 2 } x = \frac { 1 } { 3 } y + (\frac { 1 } { 2 }) (3) } \\
{ \frac { 2 } { 3 } y = \frac { 1 } { 4 } x + (\frac { 1 } { 4 }) (3) } \\
{ (\frac { 3 } { 4 }) (3) = \frac { 1 } { 4 } x + \frac { 1 } { 3 } x }
\end{array} \quad \left\{\begin{array}{l}
3 x=2 y+9 \\
8 y=3 x+9 \\
27=3 x+4 y
\end{array}\right.\right.
$$

By solving the equations we get $x=5$ and $y=3$.
13 D $a=\{4,2,9,10,1,3,7,5\}$
Notice that variable i has been changed to 5 before function sum5(1) ends. As the two loop (one at sum5 and one at main program) use the same global variable i, after we call sum5 (1) at main program we actually set $b[5]=26$ and exit the main program (as $5>4$), therefore $b[1]=0$ as memset function sets $b=\{0,0,0,0,0,0,0,0,0\}$ initially.
$14 \quad \mathrm{~B} \quad \mathrm{~b}=\{0,0,0,0,0,26,0,0,0\}(0$ based), therefore maximum number $=26$

15 D It is always possible that today is cloudy. Then, Ken feels sad and eats a lot of dinner. Thus, all three conditions are possible.
16 C Precision error occurs in code segment iii.
In code segment ii, $\mathrm{b}=\mathrm{b}-0.5$ would not result in precision error as both 2013.0 and 0.5 can be accurately stored using floating point data types.

Q	A	Explanation
17	B	P1 prints $N(N-1)(N-2) / 6{ }^{\text {'*'s. For }} N=4$, P1 prints $4{ }^{\text {'*' } \mathrm{s}}$ P2 prints $N^{2}{ }^{2} *$'s. For $N=4, \mathrm{P} 2$ prints $16{ }^{\text {'* }}$'s P3 prints fewer than $N\left(1+\left\lfloor\log _{2} N\right\rfloor\right)$ '*'s. For $N=4$, P 3 prints $12{ }^{\text {'*'s }}$ P4 prints $2^{N-4}-1$ '*'s. For $N=4, \mathrm{P} 1$ prints $0{ }^{\prime *}$'s
18	A	P1 prints $N(N-1)(N-2) / 6$ '*'s. For $N=9$, P1 prints 84 '*'s P 2 prints $N^{2 \prime *}$'s. For $N=9, \mathrm{P} 2$ prints 81 '*'s P 3 prints fewer than $N\left(1+\left\lfloor\log _{2} N\right\rfloor\right)$ '*'s. For $N=9, \mathrm{P} 3$ prints $33^{\text {'*'s }}$ P4 prints $2^{N-4}-1$ '*'s. For $N=9$, P 1 prints $31^{\prime *}{ }^{\prime}$ s
19	C	We only need to compare P 1 and P 4 as P 1 has the highest degree of N. For $N=11$, P1 prints $165^{\prime *}$'s, P4 prints $127^{\text {'*'s. }}$ For $N=12$, P1 prints 220 '*'s, P4 prints 255 '*'s. (P2: 144, P3; 44)
20	D	7 '*'s are printed if the initial content of a is $\{1,-2,7,-5,1,-3,-3,-1\}$
21	C	Each integer from 0 to 4 is added 24 times.
22	A	Answer $=5 \mathrm{C} 3 \times 5^{3}=1250$
23	B	$f(n)$ returns the number of ' 1 's in the binary representation of n. From 0 to 31 , ' 1 ' appears 16 times for each bits $0-4$. Answer $=16 * 5=80$
24	D	Let the length of road connecting A and B be $w(\mathrm{~A}, \mathrm{~B})$ and so on. It is given that $w(\mathrm{~A}, \mathrm{C})+w(\mathrm{C}, \mathrm{B})<w(\mathrm{~A}, \mathrm{~B})$ Without losing generality we assume $w(\mathrm{C}, \mathrm{B})>w(\mathrm{~A}, \mathrm{C})$, then $w(\mathrm{C}, \mathrm{B})=w(\mathrm{~A}, \mathrm{C})+x$, where x is positive $w(\mathrm{~A}, \mathrm{C})+w(\mathrm{C}, \mathrm{~B})<w(\mathrm{~A}, \mathrm{~B})$ $2 w(\mathrm{~A}, \mathrm{C})+x<w(\mathrm{~A}, \mathrm{~B})$. Therefore road between A and B is at least twice as long as the shortest road.
25	A	For each distinct prime factor p of n, ans $=$ ans $/ \mathrm{p}^{*}(\mathrm{p}-1)$ So $\mathrm{f}(997)=997 / 997 * 996=996, \mathrm{f}(1001)=1001 / 7 * 6 / 11 * 10 / 13 * 12=720$, $\mathrm{f}(1024)=1024 / 2 * 1=512, \mathrm{f}(1089)=1089 / 3 * 2 / 11 * 10=660$

Section B

