Hong Kong Olympiad in Informatics 2013
Heat Event (Junior Group)
Official Solution

Statistics ($\mathrm{N}=190$)
Full mark $=46$. Maximum $=37$. Median $=18.5$. Advance to Final $=21$ marks or above.

Section A

8 C Among positive integers, only 1, 2, 4, 5, 8, 11 are unobtainable.
If $n \equiv 0(\bmod 3)$, it is obviously obtainable $(x=n / 3)$.
If $n \equiv 1(\bmod 3)$, one solution is $x=(n-7) / 3$ and $y=1$.
If $n \equiv 2(\bmod 3)$, one solution is $x=(n-14) / 3$ and $y=2$.
9 A Program code in the same line after the inline comment symbol // are ignored
10 B Here, $\mathrm{k}=\mathrm{k}^{*} 2$; would be executed if and only if $\mathrm{i}=\mathrm{k}$
$\mathrm{k}=2 \rightarrow 4 \rightarrow 8 \rightarrow 16 \rightarrow 32 \rightarrow 64 \rightarrow 128 \rightarrow 256 \rightarrow 512 \rightarrow 1024 \rightarrow 2048$ (as 1024<2013)
11 C The program implements bubble sort.
Array a after the fourth iteration of i:
$4,7,1,6,2,8,3,5 \rightarrow 4,1,6,2,7,3,5,8 \rightarrow 1,4,2,6,3,5,7,8 \rightarrow 1,2,4,3,5,6,7,8 \rightarrow 1,2,3,4,5,6,7,8$
Question is asking for ans $=a[j]=a[7-i]=a[7-3]=a[4]=5$

Q A Explanation

$12 \quad \mathrm{C} \quad$ Let x and y be the values of wine X and wine Y (in thousands).

$$
\begin{cases}\frac{1}{2} x=\frac{1}{3} y+\left(\frac{1}{2}\right)(3) \\ \frac{2}{3} y=\frac{1}{4} x+\left(\frac{1}{4}\right)(3) \\ \left(\frac{3}{4}\right)(3)=\frac{1}{4} x+\frac{1}{3} x & \end{cases}
$$

By solving the equations we get $x=5$ and $y=3$.
13 D We have:
$A=E, A=!B, D=!B, C=D, D=!G, F=!D, F=G$
From the first four clauses we can deduce $D=!B=A=E$, so $D=E$.
This question can also be solved by arbitrarily assigning values to the variables, such as $\mathrm{A}=$ true. Then the values of other variables can be easily obtained.
14 A ' 0 '<' 1 '<' $2{ }^{\prime}<{ }^{\prime} 3^{\prime}<{ }^{\prime} h h^{\prime}<{ }^{\prime} i^{\prime}<{ }^{\prime} k$ ' ${ }^{\prime}{ }^{\prime} o^{\prime}$ in character comparison.
$h>a$, so h is printed. $k>h$, so k is printed. $o>k$, so o is printed.
The remaining characters are all smaller than o.
15 D It is always possible that today is cloudy. Then, Ken feels sad and eats a lot of dinner. Thus, all three conditions are possible.
16 C Precision error occurs in code segment iii.
In code segment ii, $\mathrm{b}=\mathrm{b}-0.5$ would not result in precision error as both 2013.0 and 0.5 can be accurately stored using floating point data types.

17		P1 prints $N(N-1)(N-2) / 6^{\text {'*'s. For }} N=4$, P1 prints $4{ }^{\text {'*' }} \mathrm{s}$ P2 prints $N^{2 \text { '*'s. For } N=4, ~ P 2 ~ p r i n t s ~} 16{ }^{\text {'*'s }}$ P3 prints fewer than $N\left(1+\left\lfloor\log _{2} N\right\rfloor\right)$ '*'s. For $N=4$, P3 prints $12{ }^{\text {'*'s }}$ P4 prints $2^{N-4}-1$ '*'s. For $N=4$, P 1 prints $0{ }^{\text {'*' } \mathrm{s}}$
18		P1 prints $N(N-1)(N-2) / 6$ '*'s. For $N=9$, P1 prints $84^{\text {'*' } \mathrm{s}}$ P2 prints $N^{2 ‘ *}$'s. For $N=9, \mathrm{P} 2$ prints 81 '*'s P3 prints fewer than $N\left(1+\left\lfloor\log _{2} N\right\rfloor\right)$ '*'s. For $N=9$, P 3 prints $33{ }^{\text {'*' } s}$ P4 prints $2^{N-4}-1$ '*'s. For $N=9, \mathrm{P} 1$ prints $31^{\prime *}$'s
19	C	We only need to compare P1 and P4 as P1 has the highest degree of N. For $N=11$, P1 prints $165^{\prime *}$'s, P4 prints $127^{\text {'*'s. }}$ For $N=12$, P1 prints 220 '*'s, P4 prints 255 '*'s. (P2: 144, P3; 44)
20	D	The program copies the value of s [9-i] to s [i] but not the reverse. hkoi is overwritten.
21	D	The expression did not check $\mathrm{a}+\mathrm{b}>\mathrm{c}$. (The first two conditions are equivalent)
22	B	Answer $=3 \mathrm{C} 2 \times 3^{2}=27$
23	B	$f(n)$ returns the number of ' 1 's in the binary representation of n. From 0 to 15 , ' 1 ' appears 8 times for each bits $0-3$. Answer $=8 * 4=32$

Q A Explanation

24 Cancelled
25 A For each distinct prime factor p of n, ans $=$ ans $/ \mathrm{p}^{*}(\mathrm{p}-1)$
So $f(53)=53 / 53 * 52=52, f(54)=54 / 2 * 1 / 3 * 2=18$,
$\mathrm{f}(55)=55 / 5 * 4 / 11 * 10=40, \mathrm{f}(56)=56 / 2 * 1 / 7 * 6=24$

Section B

