HKOI 2005 Heat Event (Junior Group) Suggested Answer

Section A

	Q
	A
	Explanation

	1
	A
	The maximum value that can be stored by a 16-bit signed integer variable is 215 – 1 = 32767. Overflow occurs when the variable is incremented beyond this value.

	2
	D
	If b > d, ‘hello’ is printed.

If b < d, ‘b<d’ is printed.
If b = d, b-d, which evaluates to 0, is printed.

	3
	D
	The answer can be obtained by dry-running the program.

Alternatively, it is easy to see that in each iteration, the value of x is incremented by 7. When the last iteration begins, we have x = 63. So we should have A[3] = 9 in the end. Only option D satisfies this observation.

	4
	D
	This problems tests student’s knowledge about character codings.

	5
	C
	When y = 0, taking the modulus of x divided by y would yield a division by zero error since division is performed in finding this value.

	6
	C
	The answer can be obtained by trying out all 4 possible combinations for a and b.

	7
	C
	After the execution of the for-loop, the value in a is (1 + 2 + … + n) = n*(n+1)/2. With this observation, it is easy to derive the final result.

	8
	B
	Division has higher priority than additional in arithmetic operations. In Option B, only the last element is divided by 5, hence the result is incorrect.

	9
	B
	Inside f(), y refers to the local variable declared in f(). Therefore, the global variable y is unchanged throughout the execution of f().

	10
	A
	This is an arithmetic problem. Contestants can solve it by obtaining the range of the expression after each step. For A,

[image: image1.wmf]]

19

,

15

[

15

9

/

4

*

)

1

(

]

4

,

0

[

9

/

4

*

)

1

(

]

9

,

0

[

)

1

(

]

10

,

1

[

Î

+

-

Þ

Î

-

Þ

Î

-

Þ

Î

c

c

c

c

Similar arguments can be carried out for B to D.

	11
	C
	The answer can be derived from the following table:

Time

Good robots

Bad robots

Total

In the beginning

1

0

1

At the end of 1st year

2

1

3

At the end of 2nd year

4

3

7

At the end of 3rd year

8

7

15

At the end of 4th year

16

15

31

At the end of 5th year

32

31

63

Actually, it can be proved that the total number of robots at the end of nth year is always 2(n+1) – 1.

	12
	C
	It takes 25 iterations for x to be incremented over 50. In repeat-until/do-while loop, the condition is checked at the end of each iteration, so it is executed exactly 25 times.

	13
	C
	This problem tests students’ knowledge about permutations. The answer here is 6P6 = 6!

	14
	D
	The answer to this problem is equivalent to the following expression:

[image: image2.wmf](

)

(

)

(

)

44100

2

1

20

20

210

210

2

1

20

20

20

1

1

20

1

20

1

20

1

20

1

=

÷

ø

ö

ç

è

æ

+

=

=

÷

ø

ö

ç

è

æ

+

´

=

÷

÷

ø

ö

ç

ç

è

æ

´

=

´

å

å

å

å

å

å

=

=

=

=

=

=

i

i

i

i

i

j

j

i

i

j

i

j

i

	15
	B
	In the first iteration, the first if-condition is always satisfied, so the program never assign A[0] to min.

	16
	A
	For (ii), the number of comparisons needed is
[image: image3.wmf]é

ù

n

2

log

, note that this value can be slightly greater than
[image: image4.wmf]n

2

log

.

	17
	D
	Substitute i with the first number of the for-loop into the assignment statement. It is obvious to see which statements are wrong.

	18
	B
	The problem involves simple coordinate transformation.

	19
	D
	Reversing an array can be done by swapping the first element with the last element, then the second element with the second-last element etc. If the array contains n elements, only n/2 swaps are required. Among the answers, only Option D swaps n/2 times.

	20
	A
	For (iii), filling a 16-bit signed integer variable with all 1-bits is equivalent to assigning -1 to the variable. However, since each 16-bit signed integer consists of two bytes, the whole array is 20000 bytes in size. By filling the first 10000 bytes, only the first 5000 elements are initialized to -1.

Actually, the safest way to use fillchar()/memset() is to determine the array size with sizeof(), e.g. fillchar(x, sizeof(x), 255) / memset(x, 255, sizeof(x))

	21
	B
	The program converts a 10-bit unsigned binary number to decimal number.

	22
	C
	This is the Josephus’ Problem. The solution can be found by simulating the process. Actually there exists a more efficient solution. Please search for this topic on the Internet if you are interested.

	23
	D
	Consider the small cube, called X, at the center of the large cube. When we apply a cut to the large cube, at most one face of X is cut and exposed. So, we need at least 6 cuts to have X entirely exposed.

	24
	D
	The program always output the difference between the maximum and minimum value among a, b and c. Therefore, this value can never be negative.

The program outputs zero when a = b = c.

	25
	C
	The value of an element in A is the sum of all elements before it. The answer can be found by finding the value of each element one by one. Alternatively, it can be proved that the value of A[n] is 2(n-1) for n > 0.

	26
	C
	For (ii), it is possible to apply bubble sort on linked list because we only need to compare the values between adjacent elements and access the elements one by one.

	27
	B
	Here is the value of i after the first few iterations:

j

beginning / 0

1

2

3

4

5

6

7

8

9

10

i

0

1

3

2

6

4

7

5

0

1

3

Observe the pattern. There is a cycle of length = 8. Therefore the value after the nth iteration should equal to the value after the (n mod 8)th iteration.

	28
	D
	The number of writeln()/printf() statements executed is N2, so it is obvious that the amount of time needed for execution is approximately proportional to N2. When N is tripled, the amount of time needed should be 9 times the original value.

	29
	B
	We may apply a technique similar to the one used in Question 27:

i

beginning/0

1

2

3

4

5

6

a

1

2

3

2

3

2

3

b

2

3

2

3

2

3

2

c

3

2

3

2

3

2

3

Again, it is easy to observe the pattern.

	30
	B
	The problem may be solved by following the recursive formula directly.

Alternatively, we can try to simplify the formula. For instance, it is easy to observe that when both a and b are non-zero, f(a, b) = f(a, 0) + b. This observation can save a few steps in calculation.

Section B

	Q
	Possible Answers (not exhaustive)
	Explanation

	
	Pascal Version
	C/C++ Version
	

	A
	x mod 10
	x % 10
	The simplest way to reverse a positive integer is to print the right-most digit and then remove it by division.

	B
	x div 10
	x / 10
	

	C
	12
	The function f(a,b) returns a! / b!

	D
	720
	

	E
	A[i]
	A[i]
	This is a special case of counting sort, in which all elements are distinct.
Counting sort is a sorting algorithm that counts the total number of occurrence of each element and then returns the elements based on the counts.

	F
	i
	i
	

	G
	N = 8; output = 2 4

N = 16; output = 2 4

N = 27; output = 3 9

N = 100; output = 2 5 10

(And many other answers)
	This program attempts to find all prime factors by looking for divisors one by one. However, there is a bug in the program. The prime factor is divided at most once from the number.

The correct approach is to keep dividing with the prime factor until it is no longer divisible.

This problem requires contestants think of critical input data such that a program will fail. This is a crucial skill to get a good result in programming contests.

	H
	
	

	I
	17
	We have A[i] = A[i-1] + A[i-2] for i = 2, 3, 4.

A[4] = A[3] + A[2]

 = (A[2] + A[1]) + A[2]

 = 2 (A[2]) + A[1]

 = 2 (A[1] + A[0]) + A[1]

 = 3 A[1] + 2 A[0]

By solving this equation, we have A[1] = 17.

	J
	maximum(a,b)
	maximum(a,b)
	minimum(a,b) + maximum(a,b) = a + b

	K
	2 * b – a
	2 * b – a
	Let the original values in a and b be a’ and b’. After the 2nd statement is executed, we have a = 2a’ – b and b = a’. The problem becomes how to combine a and b to give the value a’ in the final statement.

	L
	(i + 2) mod 5
	(i + 2) % 5
	The next tip in clockwise direction to tip i is always tip (i+1) mod 5. So the 2nd-next and 3rd-next tips are (i+2) mod 5 and (i+3) mod 5 respectively.

P.S. The next tip of tip i in anti-clockwise is NOT (i-1) mod 5, because when i = 0, this formula gives -1. The correct formula should be (i+4) mod 5.

	M
	(i + 3) mod 5
	(i + 3) % 5
	

	N
	n – 1
	n – 1
	Note that n is incorrect because it will compare a[n] with a[n+1], which is out of the bounds of the array.

	O
	A[i] <> A[i+1]
	A[i] != A[i+1]
	To make sure every printed number is unique, we print the number only when it appears for the first time. This can be done simply by comparing it with the number before it, because the array is sorted in ascending order.

_1192204982.unknown

_1192274790.unknown

_1192205106.unknown

_1192198173.unknown

