HKOI2004 Final Event (Junior Group)

Question 0
Enumeration (50 Marks)

	Program Name:
PROGRAM0.EXE

Input File:
INPUT0.TXT

Output File:
OUTPUT0.TXT

Maximum Execution Time:
1 second

Write a program to read an integer N and output all integers from 1 to N 2.

Input

The input file contains an integer N (1  N  10).

Output

The output file consists of N lines, each containing N integers, separated by a single space. The integers are 1 to N 2 in an order specified below. An integer is always greater than the one on its right and all numbers in the row above, if applicable.

Sample Input

	4

Sample Output

	4 3 2 1

8 7 6 5

12 11 10 9

16 15 14 13

Question 1
Traffic Lights (100 Marks)

	Program Name:
PROGRAM1.EXE

Input File:
INPUT1.TXT

Output File:
OUTPUT1.TXT

Maximum Execution Time:
2 seconds

Phoebe is on a helicopter flying over a city. Suddenly she finds that all the traffic lights in the city turn from Green to Red at the same time. She thinks that this happens very rarely. Her problem is that how long it will take until this happens again.

She does some research on all the N traffic lights in the city. The traffic light i (1 i N) stays at green for Gi seconds, then it switches to red immediately and stays for Ri seconds. Then it switches to green immediately again. Being a good friend of her, you are asked to solve the problem.

Input

The first line of the input file contains a positive integer N (2 (N (20). Each of the next N lines contains 2 space-separated integers Ri, Gi (1 (Ri, Gi (100).
Output
The output file should contain exactly one positive integer, the minimum number of seconds between two such events. You may assume the output is less than 231.

Sample Input

	4

5 5

15 5

50 30

70 80

Sample Output

	1200

Question 2
Currency Exchange (100 Marks)

	Program Name:
PROGRAM2.EXE

Input File:
INPUT2.TXT

Output File:
OUTPUT2.TXT

Maximum Execution Time:
2 seconds

An exchange rate is the value of one national currency in terms of another. For example, the US Dollar/HK Dollar exchange rate is 7.8, which means the value of 1 US dollar is equivalent to 7.8 HK dollars.

Exchange rates are not fixed. They are affected by many factors including interest rates, relative inflation and economic growth. In this problem, we are going to focus on the fluctuation of exchange rates only.

Suppose you know the Currency A/Currency B exchange rates of the coming few days. It is possible to make use of this information to increase your wealth by converting your money between these two currencies.

For example, if you know that the Currency A/Currency B exchange rate of the coming 3 days (Day 1, Day 2, Day 3) will be 1.05, 1.08 and 0.9 respectively, and you are only holding 100 units of Currency A right now. You may convert all of your money to Currency B on Day 2 and receive 108 units of Currency B. Then, you may convert all of your money back to Currency A on Day 3 and receive 120 units of Currency A. Thus, you have earned 20 units of Currency A at the end of Day 3.

Given N, M and the Currency A/Currency B exchange rates of the coming N days, write a program to calculate the maximum possible wealth at the end of Day N if you are holding only M units of currency A at the beginning of Day 1. You must convert all of your money back to Currency A on or before Day N.

Input

The input file contains two lines. The first line contains two integers N (1 (N (10000) and M (1 (M (30000). The next line contains N real numbers, which are the exchange rates of the coming N days, starting from the Day 1. All exchange rates are positive real numbers less than 100. All numbers on the same line are separated by exactly one space.

Output

The output file should contain exactly one integer, which is the maximum possible amount of Currency A you may have at the end of Day N. You may assume the output is less than 106.
Sample Input

3 100

1.05 1.08 0.90
Sample Output

120

Question 3
Reversi (100 Marks)

	Program Name:
PROGRAM3.EXE

Input File:
INPUT3.TXT

Output File:
OUTPUT3.TXT

Maximum Execution Time:
2 seconds

Reversi is a 2-player game played on an 8 (8 board of squares. Each square in the board not occupied by either a White piece or a Black piece is considered vacant.

In each move, a player, say the White player, places a White piece into a vacant square in order to capture some Black pieces. Considering one of the 8 (horizontal, vertical and diagonal) directions, if there exists a White piece in that direction such that all the squares between the newly placed piece and this piece are occupied by Black pieces, then all these Black pieces will be captured. The total number of pieces that can be captured by this move is the sum of all directions where pieces can be captured.

For simplicity, a Black piece is denoted by ‘B’, a White piece is denoted by ‘W’ while a vacant square is denoted by ‘.’. Consider the following board.
	
	1
	2
	3
	4
	5
	6
	7
	8

	A
	.
	.
	.
	.
	.
	.
	.
	.

	B
	.
	.
	.
	.
	.
	.
	.
	.

	C
	.
	.
	.
	.
	W
	.
	.
	.

	D
	.
	.
	.
	W
	B
	.
	.
	.

	E
	.
	.
	.
	B
	B
	W
	.
	.

	F
	.
	.
	.
	.
	.
	.
	.
	.

	G
	.
	.
	.
	.
	.
	.
	.
	.

	H
	.
	.
	.
	.
	.
	.
	.
	.

There are a few vacant squares that one can place a White piece in order to capture some Black pieces. All possible locations are specified as follows:

	Location of move (White)
	C4
	D6
	E3
	F4
	F5
	F6

	Number of Black pieces captured
Location of Black pieces captured
	1

D5
	1

D5
	2

E4, E5
	1

E4
	2

D5, E5
	1

E5

Thus, the maximum number of Black pieces that can be captured by this move is 2, by either placing the White piece on E3 or F5.

You are now given a board and required to write a program to compute the maximum number of Black pieces that can be captured by placing a White piece in any of the vacant squares.

Input

The input file contains 8 lines, each containing 8 characters, indicating the status of the squares. A Black piece is denoted by ‘B’, a White piece is denoted by ‘W’ while a vacant square is denoted by ‘.’.

Output

The output file should contain exactly one integer, which is the maximum number of Black pieces captured.

Sample input

........

....W...

...WB...

...BBW..

........
........

........

Sample output
	2

Question 4
Amazing Robot (100 Marks)

	Program Name:
PROGRAM4.EXE

Input File:
INPUT4.TXT

Output File:
OUTPUT4.TXT

Maximum Execution Time:
5 seconds

You are the proud owner of a robot that is located in a maze containing P (P squares. Each square of the maze is addressed by its north-south coordinate and west-east coordinate. Square (1, 1) in the maze is the square in the north-west corner. Square (1, P) in the maze is the square in the north-east corner. Your goal is to determine a shortest sequence of commands such that the robot starts from square (1, 1) and reaches square (P, P).

An obstacle in the maze occupies exactly one square. The robot cannot move into a square occupied by an obstacle. Any two obstacles are not adjacent, that means they do not share a common corner or a common edge.
You can send a sequence of commands to the robot. Each command is a direction (north, south, east, or west denoted by N, S, E or W respectively). A robot moves one square in the direction of the command, unless the robot would collide with an obstacle or leave the maze, in which case the robot does not move. A robot ignores all commands after it has reached square (P, P).

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

In the above maze, the sequence

‘E’, ‘E’, ‘S’, ‘E’, ‘E’, ‘E’, ‘W’, ‘S’, ‘S’, ‘E’
leads the robot to square (P, P). Another sequence

‘E’, ‘S’, ‘S’, ‘E’, ‘S’, ‘E’
also leads the robot to square (P, P), but is shorter than the previous sequence.

Given the size of the maze along with the positions of the obstacles, determine a shortest sequence of commands for which the robot reaches square (P, P).

Input

The first line of the input file contains an integer P (2 (P (100), the size of the maze. The second line contains an integer Q (0 (Q (1000), the number of obstacles in the maze. Each of the next Q lines contains two space-separated integers, x and y, specifying an obstacle in square (x, y). The squares (1, 1) and (P, P) do not have obstacles.

Output

The first line of the output file should contain a single integer K, the minimum number of commands for the robot to reach square (P, P). The next K lines are the sequence of commands, each containing a single character ‘N’, ‘S’, ‘E’ or ‘W’, representing north, south, east, and west, respectively. If there is more than one solution, you are only required to output anyone of them.

Sample Input

4

3

1 3

3 4

4 2

Sample Output
6

E

S

S

E

S

E

E

W

S

N

- 4 -

