HKOI'99 Final Event (Senior Group)

Question 1
Dominoes

Program Name:

PROGRAM1.EXE

Each domino consists of 2 parts, the left part and the right part. There is an integer (1 - 6) in each part. Two dominoes can be connected at one end if they have the SAME integer in the part of connection. You are given a number of dominoes (less than 15), and asked to connect some of these dominoes in one single straight chain such that the total of the integers on this chain is the maximum. For example, four dominoes 2|5, 1|2, 4|6 and 3|5 can be connected as 1|2 2|5 5|3 (with 4|6 not connected) and the total of integers is 18.

Write a program to read the given dominoes from a text file and output to the screen the maximum total of the connected chain.

Input File

The first line consists of an integer n, which is the number of given dominoes. There are n subsequent lines. Each of these lines consists of two integers which represent the integers stored in the two parts of a domino.

Sample Input File

SAMPLE1.TXT

4

2 5

1 2

4 6

3 5

Sample Run

(Any values after "?" are inputs by the user during program execution. Others are outputs by the program.)

Data File?SAMPLE1.TXT

Maximum total = 18

Question 2
Rectangles

Program Name:

PROGRAM2.EXE

In an xy-plane (0 (x, y (1000), there are N (< 100) rectangles. The edges of each rectangle are either parallel or perpendicular to the x-axis. In addition, the vertices of each rectangle are of integer co-ordinates. Write a program to read the coordinates of rectangles from a text file and output to screen the area of the region common to all the rectangles.

Input File

The first line of the input file stores the value of N. Each of the subsequent N lines consists of four integers x1, y1, x2, y2. The first two integers x1 and y1 specify the coordinates (x1, y1) of the upper-right corner while the last two integers x2 and y2 specify the coordinates (x2, y2) of the lower-left corner of the rectangle. Integers in a line are separated by a space.

Sample Input File

SAMPLE2.TXT

3

10 20 5 10

16 18 6 8

20 14 2 12

Sample Run

(Any values after "?" are inputs by the user during program execution. Others are outputs by the program.)

Data File?SAMPLE2.TXT

Common area = 8
Question 3
Adding Brackets

Program Name:

PROGRAM3.EXE

There is a special multiplication operator such that

Right

Left
a
b
c

a
b
b
a

b
c
b
a

c
a
c
c

Thus ab = b, ba = c, bc = a, cb = c, …
By given a string s, and a character t, you are asked whether it is possible to parenthesize s (adding brackets) in such a way that, after the above special operations, t can be obtained.

For example, you are given the string bbbba and the character a, the answer returned should be ‘yes’ because

(b(bb))(ba)
=
(bb)(ba)
[as bb = b]

=
b(ba)
[as bb = b]

=
bc

[as ba = c]

=
a

[as bc = a]

By adding suitable brackets, bbbba can produce a according to the above multiplication table. Furthermore, the addition of the brackets is not unique. For example (b(b(b(ba)))) = a.

Write a program to read the character t and the string s (less than 50 characters in length) from a text file and output to the screen a single word which may be ‘yes’ or ‘no’ to indicate whether the string can be parenthesized to produce the given character.

[Note :
Marks will not be given to a program that always gives the same answer for any sets of test data or produce different answers for the same set of test data.]

Sample Input File

SAMPLE3.TXT

a

bbbba

Sample Run

(Any values after "?" are inputs by the user during program execution. Others are outputs by the program.)

Data File?SAMPLE3.TXT

yes

Question 4
Mini-JUPAS System

Program Name:

PROGRAM4.EXE

Name of output file:
OUTPUT.TXT
Write a program to emulate JUPAS, which allocates university places to Form 7 students according to their preferences and examination results.

There are N students, with unique 6-digit candidate numbers. Each student takes 3 subjects: Language, Business and Sciences.

There are M courses in universities, with unique 3-digit course codes. Each course has a student intake quota Q, and an admission formula, calculating an index for each student:
Course-specific index for a student =
Score of Language * Weight of Language +

Score of Business * Weight of Business +

Score of Sciences * Weight of Sciences

Each student makes 3 choices, in certain priority. Allocation is done this way:

1.
Indexes are calculated for all choices of all students.

2.
A table of application is generated for each course, containing candidate numbers, their indexes and priorities. It is sorted in descending order of the index.

3.
For each course, places are allocated to the top Q first-choice students.

4.
For each student without offer, his second choice is considered. Here, if the quota is not yet full, or if his index is larger than the worst admitted so far, he is allocated a place. In the later case, the place for the last admitted student in the list will be withdrawn.

5.
If a student still has no offer, step 4 is repeated for his third choice. Step 4 is repeated for any students with place withdrawn, too.

6.
A report on the allocation results is generated.

Input File

The first line of the input file contains two integers N (0 < N < 100) and M (3 (M < 10). Each of the next N lines contains information of a candidate, which consists of 7 integers: candidate number, score for Language, score for Business, score for Sciences (0 (score (100), and 3 course codes in decreasing priority.

Each of the subsequent M lines contains 5 integers: the course code, the quota Q (0 < Q (5), weights for Language, Business and Sciences (1 (weight (5).

Output File

The allocation result should be output to a text file OUTPUT.TXT. There should be N+M lines in the output file. Each of the first N lines contains a candidate number followed by either the course code or the string “NO OFFER” (no place is allocated). The lines are in the same order of candidate number as input.

Each of the next M lines contains the course code, and either “NO STUDENT” (no student for that course) or the candidate numbers of admitted students in descending order of their indexes. The lines are in the same order of course codes as input.

The format of the output lines should be exactly the same as shown in the sample output.

Sample Input File

SAMPLE4.TXT

6 4

142857 70 60 90 222 444 333

285714 80 50 40 222 111 333

428571 70 100 40 333 444 111

571428 40 50 80 111 222 333

714285 30 40 100 333 222 111

857142 90 60 40 111 333 444

111 2 10 7 3

222 2 5 2 10

333 1 7 10 4

444 1 2 5 7

Sample Run

(Any values after "?" are inputs by the user during program execution. Others are outputs by the program.)

Data File?SAMPLE4.TXT

Sample Output
OUTPUT.TXT

142857 222

285714 111

428571 333

571428 NO OFFER

714285 222

857142 111

111 857142 285714

222 142857 714285

333 428571

444 NO STUDENT

- 1 -

